Patents by Inventor Bruce J. Savatsky

Bruce J. Savatsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10174142
    Abstract: Polyolefin polymerization performed by contacting in a reactor an olefin monomer and optionally a comonomer with a catalyst system in the presence of induced condensing agents (ICA) and optionally hydrogen. The ICA may include two or more ICA components where the composition of the ICA (i.e., the concentration of each ICA component) may affect the polyolefin production rate. Changes to the relative concentration of the two or more ICA components may be according to ICA equivalency factors that allow for increasing the polyolefin production rate while maintain a sticking temperature, increasing polyolefin production rate while increasing the dew point approach temperature of the ICA, or a combination thereof.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 8, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Brandon C. Locklear, R. Eric Pequeno, Abarajith S. Hari, David M. Glowczwski
  • Patent number: 10167351
    Abstract: The catalyst productivity of a polyolefin catalyst in the methods disclosed herein may be increased by increasing the concentration of an induced condensing agent (ICA) in the reactor system. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, in various ways.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 1, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Patent number: 10167350
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, Jr., Mark G. Goode
  • Publication number: 20180326386
    Abstract: Methods and systems for controlling a polymerization reactor in a non-sticking regime are disclosed. An exemplary method includes measuring parameters for the polymerization reaction including a reactor temperature and a concentration of an induced condensing agent (ICA) in a polymerization reactor. An equivalent partial pressure ((PICA)equiv) of the ICA is calculated. The polymerization reactor operation is located in a two dimension space defined by a reactor temperature dimension and a ((PICA)equiv) dimension. The location in the two dimensional space is compared to an non-sticking regime, defined as the space between an upper temperature limit (UTL) curve and a lower temperature limit (LTL) curve. Parameters of the polymerization reactor are adjusted to keep the reactor within the non-sticking regime.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 15, 2018
    Applicant: Univation Technologies, LLC
    Inventors: Abarajith S. Hari, Bruce J. Savatsky, David M. Glowczwski, Xianyi Cao
  • Patent number: 10113019
    Abstract: The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 30, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, James M. Farley, Daniel P. Zilker, Jr.
  • Patent number: 10029226
    Abstract: Methods and systems for controlling a polymerization reactor in a non-sticking regime are disclosed. An exemplary method includes measuring parameters for the polymerization reaction including a reactor temperature and a concentration of an induced condensing agent (ICA) in a polymerization reactor. An equivalent partial pressure ((PICA)equiv) of the ICA is calculated. The polymerization reactor operation is located in a two dimension space defined by a reactor temperature dimension and a ((PICA)equiv) dimension. The location in the two dimensional space is compared to an non-sticking regime, defined as the space between an upper temperature limit (UTL) curve and a lower temperature limit (LTL) curve. Parameters of the polymerization reactor are adjusted to keep the reactor within the non-sticking regime.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: July 24, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Abarajith S. Hari, Bruce J. Savatsky, David M. Glowczwski, Xianyi Cao
  • Patent number: 9963528
    Abstract: Methods of making polyethylene resins are provided. More particularly methods of modifying the melt flow ratio and swell characteristics of polyethylene resins are provided.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: May 8, 2018
    Assignee: Univation Technologies, LLC
    Inventors: R. Eric Pequeno, Bruce J. Savatsky, Peter S. Martin, Timothy R. Lynn
  • Publication number: 20180118862
    Abstract: Methods for olefin polymerization are described. The methods include a) forming a first polyolefin under a first set of polymerization conditions in the presence of a first catalyst composition and a first concentration of at least a first continuity additive composition, the first polyolefin composition having a target density, 1, and a target Flow Index, FI1; and b) forming a second polyolefin composition under a second set of polymerization conditions in the presence of a second catalyst composition and a second concentration of a second continuity additive composition, the second polyolefin composition having a target density, 2, and a target Flow Index, FI2; wherein the process is essentially free of providing a polymerization neutralizing composition between steps a) and b).
    Type: Application
    Filed: April 22, 2016
    Publication date: May 3, 2018
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Brandon C. Locklear
  • Publication number: 20180100031
    Abstract: Methods and systems for olefin polymerization are provided. The method for olefin polymerization can include flowing a catalyst through an injection nozzle and into a fluidized bed disposed within a reactor. The method can also include flowing a feed comprising one or more monomers, one or more inert fluids, or a combination thereof through the injection nozzle and into the fluidized bed. The feed can be at a temperature greater than ambient temperature. The method can also include contacting one or more olefins with the catalyst within the fluidized bed at conditions sufficient to produce a polyolefin.
    Type: Application
    Filed: April 15, 2016
    Publication date: April 12, 2018
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno
  • Patent number: 9938361
    Abstract: Methods for producing catalyst systems with increased productivity are disclosed. The methods may comprise providing a catalyst composition comprising a solvent and a single-site catalyst component, heating an inert gas to a temperature in a range of from about 100° C. to about 150° C., and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system. Additionally, the methods may comprise providing a catalyst composition comprising a solvent, an activator, a filler material, a metallocene catalyst, and a Group 15-containing catalyst; heating an inert gas to a temperature in a range of from about 100° C. to about 150° C.; and spray drying the catalyst composition in the presence of the inert gas to form a spray-dried catalyst system.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: April 10, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Timothy R. Lynn, F. David Hussein, R. Eric Pequeno, Daniel P. Zilker, Jr., Bruce J. Savatsky, Michael D. Awe
  • Publication number: 20170362353
    Abstract: The catalyst productivity of a polyolefin catalyst in the methods disclosed herein may be increased by increasing the concentration of an induced condensing agent (ICA) in the reactor system. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, in various ways.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 21, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Publication number: 20170355791
    Abstract: Polyolefin polymerization performed by contacting in a reactor an olefin monomer and optionally a comonomer with a catalyst system in the presence of induced condensing agents (ICA) and optionally hydrogen. The ICA may include two or more ICA components where the composition of the ICA (i.e., the concentration of each ICA component) may affect the polyolefin production rate. Changes to the relative concentration of the two or more ICA components may be according to ICA equivalency factors that allow for increasing the polyolefin production rate while maintain a sticking temperature, increasing polyolefin production rate while increasing the dew point approach temperature of the ICA, or a combination thereof.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 14, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Brandon C. Locklear, R. Eric Pequeno, Abarajith S. Hari, David M. Glowczwski
  • Publication number: 20170355790
    Abstract: The number of small gels that form in polyolefin thin films may be reduced by altering certain production parameters of the polyolefin. In some instances, the number of small gels may be influenced by the melt index of the polyolefin. However, in many instances, melt index is a critical part of the polyolefin product specification and, therefore, is not manipulated. Two parameters that may be manipulated to mitigate small gel count while maintaining the melt index are polyolefin residence time in the reactor and ICA concentration in the reactor.
    Type: Application
    Filed: November 24, 2015
    Publication date: December 14, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, James M. Farley, Daniel P. Zilker, Jr.
  • Publication number: 20170259236
    Abstract: The use of induced condensing agent (ICA) in fluidized bed gas phase reactor systems enables higher production rates but can affect the resulting polyolefins melt index. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, by altering the concentration of olefin monomer within the reactor system.
    Type: Application
    Filed: November 24, 2015
    Publication date: September 14, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Patent number: 9718896
    Abstract: Methods and systems for controlling a polymerization reaction in a non-sticking regime are disclosed. An exemplary method includes measuring parameters for the polymerization reaction including a reactor temperature and a concentration of an induced condensing agent (ICA) in a polymerization reactor. An equivalent partial pressure ((PICA)equiv) of the ICA is calculated. The polymerization reaction is located in a two dimension space defined by a reactor temperature dimension and a ((PICA)equiv) dimension. The location in the two dimensional space is compared to an non-sticking regime, defined as the space between an upper temperature limit (UTL) curve and a lower temperature limit (LTL) curve. The parameters of the polymerization reaction are adjusted to keep the polymerization reaction within the non-sticking regime.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: August 1, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Abarajith S. Hari, Bruce J. Savatsky, David M. Glowczwski, Xianyi Cao
  • Publication number: 20170137551
    Abstract: Methods of making polyethylene resins are provided. More particularly methods of modifying the melt flow ratio and swell characteristics of polyethylene resins are provided.
    Type: Application
    Filed: April 9, 2015
    Publication date: May 18, 2017
    Applicant: Univation Technologies, LLC
    Inventors: R. Eric PEQUENO, Bruce J. SAVATSKY, Peter S. MARTIN, Timothy R. LYNN
  • Publication number: 20170081432
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Applicant: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, JR., Mark G. Goode
  • Patent number: 9540460
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: January 10, 2017
    Assignee: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, Jr., Mark G. Goode
  • Patent number: 9221937
    Abstract: Methods and systems for olefin polymerization are provided. The method for olefin polymerization can include flowing a catalyst through an injection nozzle and into a fluidized bed disposed within a reactor. The method can also include flowing a feed comprising one or more monomers, one or more inert fluids, or a combination thereof through the injection nozzle and into the fluidized bed. The feed can be at a temperature greater than ambient temperature. The method can also include contacting one or more olefins with the catalyst within the fluidized bed at conditions sufficient to produce a polyolefin.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 29, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Timothy R. Lynn, F. David Hussein, Daniel P. Zilker, Jr.
  • Patent number: 9221936
    Abstract: A polymerization process is disclosed, including: polymerizing an olefin to form an olefin-based polymer in a polymerization reactor; and introducing a hindered amine light stabilizer to the polymerization reactor. The process may further comprise monitoring static in the polymerization reactor; maintaining the static at a desired level by use of a hindered amine light stabilizer, the hindered amine light stabilizer present in the reactor in the range from about 0.1 to about 500 ppmw, based on the weight of polymer produced by the process.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 29, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Ghanshyam Ganu H. Patel, R. Eric Pequeno, Bruce J. Savatsky, F. David Hussein