Patents by Inventor Bruce L. Anneaux

Bruce L. Anneaux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130316103
    Abstract: An improved process for forming a PTFE mat is described. The process includes providing a dispersion with PTFE, a fiberizing polymer and a solvent wherein said dispersion has a viscosity of at least 50,000 cP. An apparatus is provided which comprises a charge source and a target a distance from the charge source. A voltage source is provided which creates a first charge at the charge source and an opposing charge at the target. The dispersion is electrostatically charged by contact with the charge source. The electrostatically charged dispersion is collected on the target to form a mat precursor which is heated to remove the solvent and the fiberizing polymer thereby forming the PTFE mat.
    Type: Application
    Filed: August 2, 2013
    Publication date: November 28, 2013
    Applicant: Zeus Industrial Products, Inc.
    Inventors: Bruce L. Anneaux, Robert L. Ballard, David P. Garner
  • Publication number: 20130268062
    Abstract: The present disclosure provides composite prosthetic devices comprising two or more layers of electrospun polymers and methods of preparation thereof. In some embodiments, the two or more layers can be porous and in other embodiments, one or more components is nonporous. The composite prosthetic devices can comprise various materials and the properties of the prosthetic devices can be tailored for use in a range of different applications.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Applicant: ZEUS INDUSTRIAL PRODUCTS, INC.
    Inventors: Sabrina D. Puckett, Joshua Manasco, Robert L. Ballard, Bruce L. Anneaux
  • Publication number: 20130238086
    Abstract: A stent or other prosthesis may be formed by encapsulating a scaffold or frame with a polymer coating. The polymer coating may consist of layers of electrospun polytetrafluoroethylne (PTFE). Electrospun PTFE of certain porosities may permit endothelial cell growth within the prosthesis. The stent may be applicable to stents designed for the central venous system, peripheral vascular stents, abdominal aortic aneurism stents, bronchial stents, esophageal stents, biliary stents, or any other stent.
    Type: Application
    Filed: January 17, 2013
    Publication date: September 12, 2013
    Applicant: Zeus Industrial Products, Inc.
    Inventors: Robert L. Ballard, Bruce L. Anneaux, Sabrina D. Puckett, Joshua L. Manasco, David P. Garner
  • Publication number: 20130059497
    Abstract: In accordance with certain embodiments of the present disclosure, a process for forming a multilayered electrospun composite is provided. The process includes forming a dispersion of polymeric nanofibers, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. Nanofibers from the dispersion are electrospun onto a first ePTFE layer. A second ePTFE layer is applied onto the nanofibers to form a composite structure. The composite structure is heated.
    Type: Application
    Filed: August 2, 2012
    Publication date: March 7, 2013
    Inventors: Bruce L. Anneaux, Robert L. Ballard, David P. Gamer
  • Publication number: 20130053948
    Abstract: In accordance with certain embodiments of the present disclosure, a process of forming a prosthetic device is provided. The process includes forming a dispersion of polymeric nanofibers, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. A tubular frame is positioned over a tubular polymeric structure. Nanofibers from the dispersion are electrospun onto the tubular frame to form a prosthetic device. The prosthetic device is heated.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 28, 2013
    Inventors: Bruce L. Anneaux, Robert L. Ballard
  • Publication number: 20130023175
    Abstract: An improved process for forming a PTFE mat is described. The process includes providing a dispersion with PTFE, a fiberizing polymer and a solvent wherein said dispersion has a viscosity of at least 50,000 cP. An apparatus is provided which comprises a charge source and a target a distance from the charge source. A voltage source is provided which creates a first charge at the charge source and an opposing charge at the target. The dispersion is electrostatically charged by contact with the charge source. The electrostatically charged dispersion is collected on the target to form a mat precursor which is heated to remove the solvent and the fiberizing polymer thereby forming the PTFE mat.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 24, 2013
    Inventors: Bruce L. Anneaux, Robert Ballard, David P. Garner
  • Patent number: 8262979
    Abstract: In accordance with certain embodiments of the present disclosure, a process of forming a prosthetic device is provided. The process includes forming a dispersion of polymeric particles, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. A tubular frame is positioned over a tubular polymeric structure. Nanofibers from the dispersion are electrospun onto the tubular frame to form a prosthetic device. The prosthetic device is heated.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 11, 2012
    Assignee: Zeus Industrial Products, Inc.
    Inventors: Bruce L. Anneaux, Robert L. Ballard
  • Patent number: 8257640
    Abstract: In accordance with certain embodiments of the present disclosure, a process for forming a multilayered electrospun composite is provided. The process includes forming a dispersion of polymeric particles, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. Nanofibers from the dispersion are electrospun onto a first ePTFE layer. A second ePTFE layer is applied onto the nanofibers to form a composite structure. The composite structure is heated.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 4, 2012
    Assignee: Zeus Industrial Products, Inc.
    Inventors: Bruce L. Anneaux, Robert L. Ballard, David P. Garner
  • Patent number: 8178030
    Abstract: An improved process for forming a PTFE mat is described. The process includes providing a dispersion with PTFE, a fiberizing polymer and a solvent wherein said dispersion has a viscosity of at least 50,000 cP. An apparatus is provided which comprises a charge source and a target a distance from the charge source. A voltage source is provided which creates a first charge at the charge source and an opposing charge at the target. The dispersion is electrostatically charged by contact with the charge source. The electrostatically charged dispersion is collected on the target to form a mat precursor which is heated to remove the solvent and the fiberizing polymer thereby forming the PTFE mat.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 15, 2012
    Assignee: Zeus Industrial Products, Inc.
    Inventors: Bruce L. Anneaux, Robert Ballard, David P. Garner
  • Publication number: 20120114722
    Abstract: A method of preparing antimicrobial-containing polymeric products is provided, the method involving electrospinning a dispersion comprising a dispersible polymer, a fiberizing polymer, and one or more antimicrobial agents. The electrospun material is heated to remove solvent and the fiberizing polymer, giving a nonwoven polymeric material having antimicrobial agent incorporated therein. The material can be in the form of, for example, a non-woven sheet, tube, or covering.
    Type: Application
    Filed: October 13, 2011
    Publication date: May 10, 2012
    Inventors: Robert L. Ballard, Bruce L. Anneaux, Joshua L. Manasco
  • Publication number: 20110031656
    Abstract: In accordance with certain embodiments of the present disclosure, a process for forming a multilayered electrospun composite is provided. The process includes forming a dispersion of polymeric nanofibers, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. Nanofibers from the dispersion are electrospun onto a first ePTFE layer. A second ePTFE layer is applied onto the nanofibers to form a composite structure. The composite structure is heated.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 10, 2011
    Applicant: ZEUS, INC.
    Inventors: Bruce L. Anneaux, Robert L. Ballard, David P. Garner
  • Publication number: 20110030885
    Abstract: In accordance with certain embodiments of the present disclosure, a process of forming a prosthetic device is provided. The process includes forming a dispersion of polymeric nanofibers, a fiberizing polymer, and a solvent, the dispersion having a viscosity of at least about 50,000 cPs. A tubular frame is positioned over a tubular polymeric structure. Nanofibers from the dispersion are electrospun onto the tubular frame to form a prosthetic device. The prosthetic device is heated.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 10, 2011
    Applicant: ZEUS, INC.
    Inventors: Bruce L. Anneaux, Robert L. Ballard
  • Publication number: 20100193999
    Abstract: An improved process for forming a PTFE mat is described. The process includes providing a dispersion with PTFE, a fiberizing polymer and a solvent wherein said dispersion has a viscosity of at least 50,000 cP. An apparatus is provided which comprises a charge source and a target a distance from the charge source. A voltage source is provided which creates a first charge at the charge source and an opposing charge at the target. The dispersion is electrostatically charged by contact with the charge source. The electrostatically charged dispersion is collected on the target to form a mat precursor which is heated to remove the solvent and the fiberizing polymer thereby forming the PTFE mat.
    Type: Application
    Filed: January 19, 2010
    Publication date: August 5, 2010
    Inventors: Bruce L. Anneaux, Robert Ballard, David P. Garner
  • Publication number: 20020028156
    Abstract: This invention deals with a composite membrane comprising a thermoplastic matrix and fibrous reinforcing construct for use in constructing membrane blood oxygenators. The surface of the composite membrane can be chemically activated to incorporate functional groups to provide certain desirable properties to increase the utility of the membrane and extend its use to chromatographic applications and incorporation in dialysis units.
    Type: Application
    Filed: July 17, 2001
    Publication date: March 7, 2002
    Inventors: Bruce L. Anneaux, Shalaby W. Shalaby, R. Larry Dooley
  • Patent number: D503803
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: April 5, 2005
    Assignee: Poly-Med, Inc.
    Inventors: Shalaby W Shalaby, Bruce L. Anneaux, M. Scott Taylor