Patents by Inventor Bruce L. Bramfitt

Bruce L. Bramfitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604819
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: March 31, 2020
    Assignee: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L.
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20190338386
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: October 25, 2016
    Publication date: November 7, 2019
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T. McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20180112284
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: October 25, 2016
    Publication date: April 26, 2018
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T. McCullough, Michael A. Muscarella, John S. Nelson
  • Patent number: 9512501
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: December 6, 2016
    Assignee: ArcelorMittal Investigacion y Desarrollo, S.L.
    Inventors: Bruce L. Bramfitt, Fred B. Fletcher, John A. Davis, Jr.
  • Patent number: 9476107
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 25, 2016
    Assignee: Arcelormittal
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20140246130
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: ArcelorMittal Investigacion y Desarrollo, S.L.
    Inventors: Bruce L. BRAMFITT, Fred B. FLETCHER, John A. Davis, Jr.
  • Publication number: 20140130943
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C, 0.79-1.00%; Mn, 0.40-1.00; Si, 0.30-1.00; Cr, 0.20-1.00; V, 0.05-0.35; Ti, 0.01-0.035; N, 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: November 15, 2013
    Publication date: May 15, 2014
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson
  • Patent number: 8721807
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Arcelormittal Investigacion Y Desarrollo, S.L.
    Inventors: Bruce L. Bramfitt, Fred B. Fletcher, John A. Davis, Jr.
  • Publication number: 20120298263
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Application
    Filed: August 13, 2012
    Publication date: November 29, 2012
    Inventors: Bruce L. BRAMFITT, Fred B. Fletcher, John A. Davis, JR.
  • Patent number: 8241442
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 14, 2012
    Assignee: Arcelormittal Investigacion y Desarrollo, S.L.
    Inventors: Bruce L. Bramfitt, Fred B. Fletcher, John A. Davis, Jr.
  • Publication number: 20110139320
    Abstract: A method of making a hypereutectoid, head-hardened steel rail is provided that includes a step of head hardening a steel rail having a composition containing 0.86-1.00 wt % carbon, 0.40-0.75 wt % manganese, 0.40-1.00 wt % silicon, 0.05-0.15 wt % vanadium, 0.015-0.030 wt % titanium, and sufficient nitrogen to react with the titanium to form titanium nitride. Head hardening is conducted at a cooling rate that, if plotted on a graph with xy-coordinates with the x-axis representing cooling time in seconds, and the y-axis representing temperature in Celsius of the surface of the head of the steel rail, is maintained in a region between an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 775° C.), (20 s, 670° C.), and (110 s, 550° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 750° C.), (20 s, 610° C.), and (110 s, 500° C.).
    Type: Application
    Filed: June 4, 2010
    Publication date: June 16, 2011
    Inventors: Bruce L. BRAMFITT, Fred B. Fletcher, John A. Davis, JR.
  • Patent number: 5387392
    Abstract: A high strength, high toughness steel comprising from about 0.32 to about 0.36 percent by weight carbon, from about 0.40 to about 0.60 percent by weight manganese, from about 0.15 to about 0.35 percent by weight silicon, from about 0.80 to about 1.10 percent by weight chromium, from about 0.55 to about 0.70 percent by weight molybdenum, from about 0.01 to about 0.05 percent by weight aluminum, from about 0.002 to about 0.004 calcium, no more than about 0.015 percent by weight phosphorus, no more than about 0.008 percent by weight sulfur, with the balance being iron.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: February 7, 1995
    Assignee: Bethlehem Steel Corporation
    Inventors: Bruce L. Bramfitt, Leonard C. Luscomb
  • Patent number: 5017335
    Abstract: A microalloyed, fully killed steel has a composition, in weight percent, of from about 0.20 to about 0.45 percent carbon, from about 0.90 to about 1.70 percent manganese, from about 0.10 to about 0.35 percent silicon, from about 0.01 to about 0.04 percent aluminum, from about 0.05 to about 0.20 percent vanadium, from about 0.008 to about 0.024 percent nitrogen, balance iron. The steel is particularly useful when hot rolled to a railway joint bar section, and air cooled. The resulting joint bar meets AREA specifications in the as-rolled condition, without the need for a reheat and oil quench heat treatment after rolling.
    Type: Grant
    Filed: June 29, 1989
    Date of Patent: May 21, 1991
    Assignee: Bethlehem Steel Co.
    Inventors: Bruce L. Bramfitt, Steven S. Hansen
  • Patent number: 4415376
    Abstract: This invention is directed to a hot-rolled steel sheet having an essentially refined ferritic grain size, a balanced chemical composition comprising, by weight, 0.06 to 0.09% carbon, 1.0 to 1.6% manganese, 0.5% maximum silicon, 0.03 to 0.05% columbium, 0.06 to 0.12% vanadium, 0.010 to 0.025% nitrogen, 0.004% maximum sulfur, 0.02% maximum phosphorus, 0.02 to 0.08% aluminum, balance essentially iron, and characterized by 80 ksi minimum yield strength, improved transverse bendability, and improved sheared edge stretchability.
    Type: Grant
    Filed: February 16, 1982
    Date of Patent: November 15, 1983
    Assignee: Bethlehem Steel Corporation
    Inventors: Bruce L. Bramfitt, Steven S. Hansen, Donald L. Harper, Roger R. Pradhan
  • Patent number: 4398970
    Abstract: This invention is directed to a method and to the resulting product, wherein said product is a low-carbon dual phase steel having a combination of high strength, good ductility and a YS/TS ratio .ltoreq.0.6. The method includes the steps of (1) preparing an Al-killed steel consisting essentially of 0.05 to 0.15 wt. % C, up to 2.0 wt. % Mn, up to 1.0 wt. % Si, 0.03 to 0.15 wt. % V and a sufficient amount of titanium to "getter" the excess sulfur and nitrogen, with the balance essentially being iron, where the titanium addition should be at least equal to the atomic percent of the sulfur plus nitrogen, but no more than about 1.6 times, (2) intercritically annealing such steel within the .alpha.+.gamma. temperature range, and (3) cooling to room temperature.
    Type: Grant
    Filed: October 5, 1981
    Date of Patent: August 16, 1983
    Assignee: Bethlehem Steel Corporation
    Inventors: Arnold R. Marder, Bruce L. Bramfitt