Patents by Inventor Bruce Laprade

Bruce Laprade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7695978
    Abstract: An arrangement for a MALDI sample plate for ion mass spectroscopy is disclosed. The sample is configured to shape the hypersonic explosion which creates the ions generated in a MALDI-type time-of-flight mass spectrometer. The MALDI sample plate includes a glass wafer formed from a plurality of clad glass fibers and has a first planar surface. The plate also has a plurality of micro-wells formed in the glass wafer. The micro-wells extend to a depth that is less than the thickness of the glass wafer and act to hold a spot sample in a manner that prevents spreading, maximizes the formation of ions, and shapes the resulting ion cloud to improve ion migration.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 13, 2010
    Assignee: Burle Technologies, Inc.
    Inventors: Bruce Laprade, Sharon Mrotek
  • Publication number: 20080179513
    Abstract: An arrangement for a MALDI sample plate for ion mass spectroscopy is disclosed. The sample is configured to shape the hypersonic explosion which creates the ions generated in a MALDI-type time-of-flight mass spectrometer. The MALDI sample plate includes a glass wafer formed from a plurality of clad glass fibers and has a first planar surface. The plate also has a plurality of micro-wells formed in the glass wafer. The micro-wells extend to a depth that is less than the thickness of the glass wafer and act to hold a spot sample in a manner that prevents spreading, maximizes the formation of ions, and shapes the resulting ion cloud to improve ion migration.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Bruce Laprade, Sharon Mrotek
  • Publication number: 20080073516
    Abstract: A reflectron lens for a time-of-flight mass spectrometer is disclosed. The reflectron lens includes a glass tube having a conductive surface along the length of the tube. The conductive surface has an electrical resistance gradient along its length. The electrical resistance gradient provides an electric field interior to the tube that varies in strength along the length of the tube when an electric potential is applied to opposing ends of the tube. A mass spectrometer incorporating the reflectron lens, a method of making the reflectron lens, and an apparatus for removing lead from the surface of a lead silicate glass tube are also disclosed.
    Type: Application
    Filed: March 8, 2007
    Publication date: March 27, 2008
    Inventor: Bruce Laprade
  • Publication number: 20070236118
    Abstract: A microchannel plate and a method of making same are disclosed. The microchannel plate has an active area and at least one solid glass pad. The active area has a plurality of microchannels formed therein. The solid glass pad or pads are formed within the active area, and preferably at peripheral locations, for mounting the microchannel plate. With this arrangement, shrinkage of the microchannel plate during fabrication and hydration induced swelling of the active area after fabrication of the microchannel plate do not result in catastrophic warping or cracking of the microchannel plate.
    Type: Application
    Filed: September 1, 2005
    Publication date: October 11, 2007
    Inventors: Bruce Laprade, Francis Langevin
  • Patent number: 7154086
    Abstract: A reflectron lens and method are provided. The reflectron lens comprises a tube having a continuous conductive surface along the length of the tube for providing an electric field interior to the tube that varies in strength along the length of the tube. The tube may comprise glass, and in particular, a glass comprising metal ions, such as lead, which may be reduced to form the conductive surface. The method includes a step of introducing a beam of ions into a first end of a dielectric tube having a continuous conductive surface along the length of the tube. The method further includes a step of applying an electric potential across the tube to create an electric field gradient that varies in strength along the length of the tube so the electric field deflects the ions to cause the ions to exit the tube through the first end of the tube.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: December 26, 2006
    Assignee: Burle Technologies, Inc.
    Inventor: Bruce Laprade
  • Patent number: 7141787
    Abstract: A detector for a coaxial bipolar time-of-flight mass spectrometer is described. The detector includes a microchannel plate, a scintillator disposed in parallel relation to said microchannel plate, and a mirror oriented at an angle relative to said scintillator. The angle of the mirror is selected to reflect photons given off by the scintillator in a direction substantially orthogonal to the scintillator. The microchannel plate, the scintillator, and the mirror each have an opening formed centrally therein. The detector according to this aspect of the invention also includes a transparent tube extending through the central openings formed in each of the microchannel plate, the scintillator, and the mirror. A photomultiplier tube is coupled to the detector for receiving photons reflected by the mirror. A coaxial bipolar time-of-flight mass spectrometer incorporating the detector is also described.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: November 28, 2006
    Assignee: Burle Technologies, Inc.
    Inventor: Bruce Laprade
  • Patent number: 7081618
    Abstract: An ion mobility spectrometer is described in which the reaction-ionization chamber and/or the ion drift chamber are constructed with one or more single-piece glass tubes. The inner surface of the tube is rendered electrically conductive by thermal and/or chemical treatment thereof. The glass tube(s) are used in place of the stack assemblies of metal and ceramic annular components that typically used in such devices. The use of the glass tube(s) provides a significant reduction in the number of parts used in such spectrometers, simplification in their manufacture, and improvements in their performance and reliability.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 25, 2006
    Assignee: Burle Technologies, Inc.
    Inventor: Bruce Laprade
  • Patent number: 7026177
    Abstract: A replaceable, electronically-isolated, MCP-based spectrometer detector cartridge with enhanced sensitivity is disclosed. A coating on the MCP that enhances the secondary electron emissivity characteristics of the MCP is selected from aluminum oxide (Al2O3), magnesium oxide (MgO), tin oxide (SnO2), quartz (SiO2), barium flouride (BaF2), rubidium tin (Rb3Sn), berrylium oxide (BeO), diamond and combinations thereof. A mass detector is electro-optically isolated the from a charge collector with a method of detecting a particle including accelerating the particle with a voltage, converting the particle into a multiplicity of electrons and converting the multiplicity of electrons into a multiplicity of photons. The photons then are converted back into electrons which are summed into a charge pulse. A detector also is provided.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: April 11, 2006
    Assignee: Burle Technologies, Inc.
    Inventor: Bruce Laprade
  • Publication number: 20050253062
    Abstract: A detector for a coaxial bipolar time-of-flight mass spectrometer is described. The detector includes a microchannel plate, a scintillator disposed in parallel relation to said microchannel plate, and a mirror oriented at an angle relative to said scintillator. The angle of the mirror is selected to reflect photons given off by the scintillator in a direction substantially orthogonal to the scintillator. The microchannel plate, the scintillator, and the mirror each have an opening formed centrally therein. The detector according to this aspect of the invention also includes a transparent tube extending through the central openings formed in each of the microchannel plate, the scintillator, and the mirror. A photomultiplier tube is coupled to the detector for receiving photons reflected by the mirror. A coaxial bipolar time-of-flight mass spectrometer incorporating the detector is also described.
    Type: Application
    Filed: May 17, 2005
    Publication date: November 17, 2005
    Inventor: Bruce Laprade
  • Patent number: 6958474
    Abstract: A replaceable, electronically-isolated, MCP-based spectrometer detector cartridge with enhanced sensitivity is disclosed. A mass detector is electro-optically isolated from a charge collector with an electron multiplier for converting a charged particle into a multiplicity of electrons and a scintillator for converting the multiplicity of electrons into a multiplicity of photons. A light sensor is provided to convert the multiplicity of photons back into electrons which are summed into a charge pulse. The light sensor is realized by any of a plurality of photo-responsive devices.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: October 25, 2005
    Assignee: Burle Technologies, Inc.
    Inventors: Bruce Laprade, Ronald Starcher
  • Publication number: 20050211894
    Abstract: An ion mobility spectrometer is described in which the reaction-ionization chamber and/or the ion drift chamber are constructed with one or more single-piece glass tubes. The inner surface of the tube is rendered electrically conductive by thermal and/or chemical treatment thereof. The glass tube(s) are used in place of the stack assemblies of metal and ceramic annular components that typically used in such devices. The use of the glass tube(s) provides a significant reduction in the number of parts used in such spectrometers, simplification in their manufacture, and improvements in their performance and reliability.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 29, 2005
    Inventor: Bruce Laprade
  • Patent number: 6828729
    Abstract: A replaceable, electronically-isolated, MCP-based spectrometer detector cartridge with enhanced sensitivity is disclosed. A coating on the MCP that enhances the secondary electron emissivity characteristics of the MCP is selected from aluminum oxide (Al2O3), magnesium oxide (MgO), tin oxide (SnO2), quartz (SiO2), barium fluoride (BaF2), rubidium tin (Rb3Sn), beryllium oxide (BeO), diamond and combinations thereof A mass detector is electro-optically isolated the from a charge collector with a method of detecting a particle including accelerating the particle with a voltage, converting the particle into a multiplicity of electrons and converting the multiplicity of electrons into a multiplicity of photons. The photons then are converted back into electrons which are summed into a charge pulse. A detector also is provided.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 7, 2004
    Assignee: Burle Technologies, Inc.
    Inventors: Kevin G. Owens, Richard C. King, Bruce Laprade
  • Publication number: 20040211896
    Abstract: A replaceable, electronically-isolated, MCP-based spectrometer detector cartridge with enhanced sensitivity is disclosed. A mass detector is electro-optically isolated from a charge collector with an electron multiplier for converting a charged particle into a multiplicity of electrons and a scintillator for converting the multiplicity of electrons into a multiplicity of photons. A light sensor is provided to convert the multiplicity of photons back into electrons which are summed into a charge pulse. The light sensor is realized by any of a plurality of photo-responsive devices.
    Type: Application
    Filed: April 29, 2004
    Publication date: October 28, 2004
    Inventors: Bruce Laprade, Ronald Starcher
  • Publication number: 20040206911
    Abstract: A replaceable, electronically-isolated, MCP-based spectrometer detector cartridge with enhanced sensitivity is disclosed. A coating on the MCP that enhances the secondary electron emissivity characteristics of the MCP is selected from aluminum oxide (Al2O3), magnesium oxide (MgO), tin oxide (SnO2), quartz (SiO2), barium flouride (BaF2), rubidium tin (Rb3Sn), berrylium oxide (BeO), diamond and combinations thereof. A mass detector is electro-optically isolated the from a charge collector with a method of detecting a particle including accelerating the particle with a voltage, converting the particle into a multiplicity of electrons and converting the multiplicity of electrons into a multiplicity of photons. The photons then are converted back into electrons which are summed into a charge pulse. A detector also is provided.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 21, 2004
    Inventor: Bruce Laprade
  • Publication number: 20040183028
    Abstract: A reflectron lens and method are provided. The reflectron lens comprises a tube having a continuous conductive surface along the length of the tube for providing an electric field interior to the tube that varies in strength along the length of the tube. The tube may comprise glass, and in particular, a glass comprising metal ions, such as lead, which may be reduced to form the conductive surface. The method includes a step of introducing a beam of ions into a first end of a dielectric tube having a continuous conductive surface along the length of the tube. The method further includes a step of applying an electric potential across the tube to create an electric field gradient that varies in strength along the length of the tube so the electric field deflects the ions to cause the ions to exit the tube through the first end of the tube.
    Type: Application
    Filed: March 8, 2004
    Publication date: September 23, 2004
    Inventor: Bruce Laprade
  • Patent number: 6239549
    Abstract: An electron multiplier with a source for spontaneously generating electrons is used as an electron source for an ionization source in a mass spectrometer or the like. The electron multiplier can be a microchannel plate, in which case it produces a wide electron beam. The microchannel plate can be acid-leached to provide a surface for spontaneous generation of electrons, or the first strike surface can be coated with an alkali-containing material. The electron source can be tuned by providing an electrode for rejecting electrons having too high an energy and a grid for rejecting electrons having too low an energy.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: May 29, 2001
    Assignee: Burle Technologies, Inc.
    Inventor: Bruce Laprade