Patents by Inventor Bruce Lee Inn
Bruce Lee Inn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6593621Abstract: A lateral DMOS transistor incorporates one or more enhancement schemes for improving the breakdown voltage characteristics and ruggedness of the transistor. In one embodiment, the drain region of the lateral DMOS transistor is separated from the body region by a first distance in the rectilinear region necessary to achieve a first breakdown voltage, and separated by a second distance in the curved region necessary to achieve at least the first breakdown voltage, the second distance being greater than the first distance. In another embodiment, the gate partially overlies the field oxide region by a third distance in the rectilinear region and by a fourth distance in the curved region, the fourth distance being greater than the third distance. The enhancement schemes optimize the breakdown voltage characteristics and ruggedness of the lateral DMOS transistor in both the rectilinear and curved regions.Type: GrantFiled: August 23, 2001Date of Patent: July 15, 2003Assignee: Micrel, Inc.Inventors: Hideaki Tsuchiko, Bruce Lee Inn, Marty Garnett, Phillip Fischer
-
Publication number: 20030038316Abstract: A lateral DMOS transistor incorporates one or more enhancement schemes for improving the breakdown voltage characteristics and ruggedness of the transistor. In one embodiment, the drain region of the lateral DMOS transistor is separated from the body region by a first distance in the rectilinear region necessary to achieve a first breakdown voltage, and separated by a second distance in the curved region necessary to achieve at least the first breakdown voltage, the second distance being greater than the first distance. In another embodiment, the gate partially overlies the field oxide region by a third distance in the rectilinear region and by a fourth distance in the curved region, the fourth distance being greater than the third distance. The enhancement schemes optimize the breakdown voltage characteristics and ruggedness of the lateral DMOS transistor in both the rectilinear and curved regions.Type: ApplicationFiled: August 23, 2001Publication date: February 27, 2003Inventors: Hideaki Tsuchiko, Bruce Lee Inn, Marty Garnett, Phillip Fischer
-
Patent number: 6396311Abstract: A reference-corrected ratiometric current sensing circuit for sensing a current flowing through a load and a power-controlling pass device includes a sense device, a sense resistor, and a variable reference current source for providing a varying reference current. The varying reference current is varied according to a ratio of the voltage across the sense device to the voltage across the pass device. The ratiometric current sensing circuit of the present invention is capable of accurate current sensing in spite of disparities that may occur between the voltages across the sense and the pass devices. In one embodiment, the variable reference source includes a transconductance amplifier circuit that provides an output current indicative of the voltage difference at its input terminals.Type: GrantFiled: July 30, 2001Date of Patent: May 28, 2002Assignee: Micrel, IncorporatedInventor: Bruce Lee Inn
-
Publication number: 20020005738Abstract: A reference-corrected ratiometric current sensing circuit for sensing a current flowing through a load and a power-controlling pass device includes a sense device, a sense resistor, and a variable reference current source for providing a varying reference current. The varying reference current is varied according to a ratio of the voltage across the sense device to the voltage across the pass device. The ratiometric current sensing circuit of the present invention is capable of accurate current sensing in spite of disparities that may occur between the voltages across the sense and the pass devices. In one embodiment, the variable reference source includes a transconductance amplifier circuit that provides an output current indicative of the voltage difference at its input terminals. Furthermore, the variable reference current source includes a translinear circuit that works with the transconductance amplifier circuit to implement the prescribed arithmetic operations to generate the varying reference current.Type: ApplicationFiled: July 30, 2001Publication date: January 17, 2002Inventor: Bruce Lee Inn
-
Patent number: 6304108Abstract: A reference-corrected ratiometric current sensing circuit for sensing a current flowing through a load and a power-controlling pass device includes a sense device, a sense resistor, and a variable reference current source for providing a varying reference current. The varying reference current is varied according to a ratio of the voltage across the sense device to the voltage across the pass device. The ratiometric current sensing circuit of the present invention is capable of accurate current sensing in spite of disparities that may occur between the voltages across the sense and the pass devices. In one embodiment, the variable reference source includes a transconductance amplifier circuit that provides an output current indicative of the voltage difference at its input terminals. Furthermore, the variable reference current source includes a translinear circuit that works with the transconductance amplifier circuit to implement the prescribed arithmetic operations to generate the varying reference current.Type: GrantFiled: July 14, 2000Date of Patent: October 16, 2001Assignee: Micrel, IncorporatedInventor: Bruce Lee Inn
-
Patent number: 6275395Abstract: A controller for limiting the current through a pass transistor is described herein that includes an NMOS control transistor coupled between the gate of the pass transistor and ground. The gate of the NMOS control transistor is coupled to a bootstrap circuit via a PMOS transistor. The PMOS transistor is turned on in the event of a current limit signal to momentarily apply the bootstrap voltage to the gate of the NMOS control transistor. This quickly turns on the NMOS control transistor to discharge the gate of the pass transistor, shutting off the pass transistor and terminating the high current situation. After the bootstrapped voltage has been shunted to ground, a reverse biased diode allows the gate of the NMOS control transistor to remain charged to keep the NMOS control transistor on. After the current limit situation has passed, the NMOS control transistor is switched off.Type: GrantFiled: December 21, 2000Date of Patent: August 14, 2001Assignee: Micrel, IncorporatedInventors: Bruce Lee Inn, Alland Chee
-
Patent number: 5917319Abstract: An apparatus for sensing current in a switching device having resistive voltage-current characteristics includes a first and second power terminal (typically common or ground) for the application therebetween of an operating potential (or alternatively, power), an impedance connected between the first power terminal and a node, a switching device having its main conduction path connected between the node and the second power terminal for controlling the flow of current through the impedance, at least one sense device coupled to the node, operative to sense or divide the potential at the node to thereby provide a sensing potential, where at least one of the sense devices is switched only during at least a portion of the period when the switching device is turned on, and a voltage reference generating circuit operative to generate a reference voltage for comparison with the sensed potential.Type: GrantFiled: April 8, 1997Date of Patent: June 29, 1999Assignee: National Semiconductor CorporationInventors: Richard Frank, Bruce Lee Inn, Tamas Szepesi
-
Patent number: 5646520Abstract: An apparatus for sensing current in a switching device having resistive voltage-current characteristics includes a first and second power terminal (typically common or ground) for the application therebetween of an operating potential (or alternatively, power), an impedance connected between the first power terminal and a node, a switching device having its main conduction path connected between the node and the second power terminal for controlling the flow of current through the impedance, at least one sense device coupled to the node, operative to sense or divide the potential at the node to thereby provide a sensing potential, where at least one of the sense devices is switched only during at least a portion of the period when the switching device is turned on, and a voltage reference generating circuit operative to generate a reference voltage for comparison with the sensed potential.Type: GrantFiled: June 28, 1994Date of Patent: July 8, 1997Assignee: National Semiconductor CorporationInventors: Richard Frank, Bruce Lee Inn, Tamas Szepesi