Patents by Inventor Bruce Madigan

Bruce Madigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190134754
    Abstract: This disclosure describes an additive manufacturing method that includes monitoring a temperature of a portion of a build plane during an additive manufacturing operation using a temperature sensor as a heat source passes through the portion of the build plane; detecting a peak temperature associated with one or more passes of the heat source through the portion of the build plane; determining a threshold temperature by reducing the peak temperature by a predetermined amount; identifying a time interval during which the monitored temperature exceeds the threshold temperature; identifying, using the time interval, a change in manufacturing conditions likely to result in a manufacturing defect; and changing a process parameter of the heat source in response to the change in manufacturing conditions.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: SIGMA LABS, INC.
    Inventors: Lars Jacquemetton, Vivek R. Dave, Mark J. Cola, Glenn Wikle, R. Bruce Madigan
  • Patent number: 10207489
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 19, 2019
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Publication number: 20190039318
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 7, 2019
    Applicant: Sigma Labs, Inc.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Publication number: 20180264553
    Abstract: This invention teaches a quality assurance system for additive manufacturing. This invention teaches a multi-sensor, real-time quality system including sensors, affiliated hardware, and data processing algorithms that are Lagrangian-Eulerian with respect to the reference frames of its associated input measurements. The quality system for Additive Manufacturing is capable of measuring true in-process state variables associated with an additive manufacturing process, i.e. those in-process variables that define a feasible process space within which the process is deemed nominal. The in-process state variables can also be correlated to the part structure or microstructure and can then be useful in identifying particular locations within the part likely to include defects.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Applicant: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Patent number: 9999924
    Abstract: This invention teaches a quality assurance system for additive manufacturing. This invention teaches a multi-sensor, real-time quality system including sensors, affiliated hardware, and data processing algorithms that are Lagrangian-Eulerian with respect to the reference frames of its associated input measurements. The quality system for Additive Manufacturing is capable of measuring true in-process state variables associated with an additive manufacturing process, i.e. those in-process variables that define a feasible process space within which the process is deemed nominal. The in-process state variables can also be correlated to the part structure or microstructure and can then be useful in identifying particular locations within the part likely to include defects.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: June 19, 2018
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Publication number: 20170090462
    Abstract: This disclosure describes various system and methods for monitoring photons emitted by a heat source of an additive manufacturing device. Sensor data recorded while monitoring the photons can be used to predict metallurgical, mechanical and geometrical properties of a part produced during an additive manufacturing operation. In some embodiments, a test pattern can be used to calibrate an additive manufacturing device.
    Type: Application
    Filed: September 30, 2016
    Publication date: March 30, 2017
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Matias Roybal, Alberto Castro, Glenn Wikle, Lars Jacquemetton, Peter Campbell
  • Publication number: 20170016781
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 19, 2017
    Inventors: Vivek R. Dave, Mark J. Cola, Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Publication number: 20160185048
    Abstract: This invention teaches a multi-sensor quality inference system for additive manufacturing. This invention still further teaches a quality system that is capable of discerning and addressing three quality issues: i) process anomalies, or extreme unpredictable events uncorrelated to process inputs; ii) process variations, or difference between desired process parameters and actual operating conditions; and iii) material structure and properties, or the quality of the resultant material created by the Additive Manufacturing process. This invention further teaches experimental observations of the Additive Manufacturing process made only in a Lagrangian frame of reference. This invention even further teaches the use of the gathered sensor data to evaluate and control additive manufacturing operations in real time.
    Type: Application
    Filed: November 18, 2015
    Publication date: June 30, 2016
    Inventors: Vivek R. Dave, David D. Clark, Matias Roybal, Mark J. Cola, Martin S. Piltch, R. Bruce Madigan, Alberto Castro
  • Publication number: 20160184893
    Abstract: This invention teaches a quality assurance system for additive manufacturing. This invention teaches a multi-sensor, real-time quality system including sensors, affiliated hardware, and data processing algorithms that are Lagrangian-Eulerian with respect to the reference frames of its associated input measurements. The quality system for Additive Manufacturing is capable of measuring true in-process state variables associated with an additive manufacturing process, i.e. those in-process variables that define a feasible process space within which the process is deemed nominal. The in-process state variables can also be correlated to the part structure or microstructure and can then be useful in identifying particular locations within the part likely to include defects.
    Type: Application
    Filed: August 21, 2015
    Publication date: June 30, 2016
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Publication number: 20160098825
    Abstract: The present invention provides a feature extraction system that extracts geometrical features of a part using in-process data acquired during an additive manufacturing process. The geometric features are extracted by applying a number of image processing operations to images taken of a powder bed during the additive manufacturing process. In this way, both internal and external geometries of the part can be characterized. In some embodiments, geometric feature extraction can be used in conjunction with other part characterizing operations, such as for example, thermal characterization processes.
    Type: Application
    Filed: September 30, 2015
    Publication date: April 7, 2016
    Inventors: Vivek R. Dave, R. Bruce Madigan, Mark J. Cola, Martin S. Piltch
  • Patent number: 5756967
    Abstract: A method of sensing and controlling an arc welding process employs a high equency rate of sampling of electrical signals from the welding circuit. The sampled signals are operated upon by predetermined processes to determine electrical resistance, shielding gas quality, and short circuit frequency. The process measurements are compared to a predetermined set of tolerance levels and evaluated using a window technique that updates the evaluation of the data samples at the sampling rate.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: May 26, 1998
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy P. Quinn, R. Bruce Madigan
  • Patent number: 5514851
    Abstract: A method and apparatus for preventing catastrophic melting of the contact be in continuously-fed consumable electrode arc welding due to wire feed interruptions by monitoring the movement of the wire electrode with a high frequency sensor such as all optical encoder having a resolution on the order of <0.1 second and switching off the power to the welding apparatus if the wire electrode speed falls below a predetermined threshold.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: May 7, 1996
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Thomas A. Siewert, R. Bruce Madigan, Timothy P. Quinn
  • Patent number: 5349156
    Abstract: An gas metal arc welding (GMAW) process is monitored by disposing a light intensity sensor in the vicinity of the arc, such that the output signal from the sensor is responsive to the intensity of the arc. The arc light intensity is analyzed to determine the arc length, and to determine of the mode of metal transfer and whether the welding process is proceeding as intended.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: September 20, 1994
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: R. Bruce Madigan, Timothy P. Quinn