Patents by Inventor Bruce McGill

Bruce McGill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828108
    Abstract: An apparatus, system, and method are disclosed for capturing electrical energy from a process designed for producing hydrogen. An electrode is placed within a stream of liquid alkali metal that flows through a titration module and interacts with water to produce, among other byproducts, hydrogen. Another electrode is placed within a reaction chamber that houses the water. The electrodes can then be coupled to a terminal, and during the hydrogen generation process (when the liquid alkali metal and water interact) the stream of liquid alkali metal acts as an anode and the electrode in the water as a cathode. Current flows, and energy is captured and made available as electrical energy at the terminal, which can be connected to electrical loads. The terminal may be connected with the terminal of a fuel cell that is consuming the hydrogen that is being produced, thus providing additional voltage and/or current.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 9, 2014
    Inventor: Bruce McGill
  • Patent number: 8460412
    Abstract: A method is disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: June 11, 2013
    Inventor: Bruce McGill
  • Publication number: 20110241357
    Abstract: A method is disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 6, 2011
    Inventor: Bruce McGill
  • Patent number: 8012223
    Abstract: An apparatus, system and method are disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: September 6, 2011
    Inventor: Bruce McGill
  • Publication number: 20110117459
    Abstract: An apparatus, system, and method are disclosed for capturing electrical energy from a process designed for producing hydrogen. An electrode is placed within a stream of liquid alkali metal that flows through a titration module and interacts with water to produce, among other byproducts, hydrogen. Another electrode is placed within a reaction chamber that houses the water. The electrodes can then be coupled to a terminal, and during the hydrogen generation process (when the liquid alkali metal and water interact) the stream of liquid alkali metal acts as an anode and the electrode in the water as a cathode. Current flows, and energy is captured and made available as electrical energy at the terminal, which can be connected to electrical loads. The terminal may be connected with the terminal of a fuel cell that is consuming the hydrogen that is being produced, thus providing additional voltage and/or current.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Inventor: Bruce McGill
  • Publication number: 20100015477
    Abstract: An apparatus, system and method are disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Inventor: Bruce McGill
  • Patent number: D823609
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: July 24, 2018
    Assignee: STONEY CREEK (EST 1994) LIMITED
    Inventors: Michael James Plunkett, Glenn James Dougal, Brent David McConnell, Sally Grace Biedrowski, Brendon Scott Li, Miles Bruce McGill, Sally Francis Wade