Patents by Inventor Bruce Moision

Bruce Moision has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11909452
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: February 20, 2024
    Assignee: X Development LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Publication number: 20230208533
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Applicant: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Patent number: 11611398
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: March 21, 2023
    Assignee: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Patent number: 11456804
    Abstract: The disclosure provides a communication system that includes sensors, a plurality of components, and processors. The sensors receive measurements related to a state of the communication system. The processors receive an indication of an amount of received power at a remote communication system and estimate a state of the plurality of components based on the received one or more measurements and the received indication. Using the indication and the estimated state, the processors determine whether the amount of received power is likely to fall below a minimum received power within a given time interval. When it is likely, the processors select an adjustment technique of a plurality of adjustment techniques for adjusting a data rate of the outbound signal and adjust a given component of the communication system using the selected adjustment technique to change the data rate of the outbound signal.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: September 27, 2022
    Assignee: X Development LLC
    Inventors: Devin Brinkley, Bruce Moision, Paul Csonka, Baris Erkmen
  • Patent number: 11271645
    Abstract: The disclosure provides for a communication system that includes one or more sensors and one or more processors. The one or more processors are configured to receive, during a first timeframe, a first indication of an error rate of a communication link, a second indication of an amount of received power at a remote communication system, and one or more measurements related to the state of the communication system. The one or more processors are then configured to estimate a plurality of disturbance values to the communication system according to the one or more measurements and the second indication. Each disturbance value is associated with a set of components of the communication system. The one or more processors are configured to adjust a beam divergence of a beacon beam or a communication beam transmitted from the communication system based on the plurality of disturbance values and the first indication.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: March 8, 2022
    Assignee: X Development LLC
    Inventors: Travis Lantz, Paul Csonka, Bruce Moision
  • Publication number: 20220052766
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Application
    Filed: September 28, 2021
    Publication date: February 17, 2022
    Applicant: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Patent number: 11159249
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 26, 2021
    Assignee: X Development LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Patent number: 10992320
    Abstract: The disclosure may provide for a communication method and system. A transmitter of the communication system may include an interleaver and a first encoder for determining parity bits. The transmitter also may include a multiplexer for joining the parity bits with the data. A second encoder may be positioned after the multiplexer for implementing an error correcting code. A receiver of the communication system may include a decoder followed by an interleaver. When errors are detected in received data at the decoder, one or more processors of the receiver may be configured to correct portions of the received data and combine the corrected portions with the received data.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: April 27, 2021
    Assignee: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Edward Keyes, Baris Erkmen, Oliver Bowen
  • Publication number: 20210083768
    Abstract: The disclosure provides for a communication system that includes one or more sensors and one or more processors. The one or more processors are configured to receive, during a first timeframe, a first indication of an error rate of a communication link, a second indication of an amount of received power at a remote communication system, and one or more measurements related to the state of the communication system. The one or more processors are then configured to estimate a plurality of disturbance values to the communication system according to the one or more measurements and the second indication. Each disturbance value is associated with a set of components of the communication system. The one or more processors are configured to adjust a beam divergence of a beacon beam or a communication beam transmitted from the communication system based on the plurality of disturbance values and the first indication.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 18, 2021
    Inventors: Travis Lantz, Paul Csonka, Bruce Moision
  • Publication number: 20210028866
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Applicant: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Patent number: 10887011
    Abstract: The disclosure provides for a communication system that includes one or more sensors and one or more processors. The one or more processors are configured to receive, during a first timeframe, a first indication of an error rate of a communication link, a second indication of an amount of received power at a remote communication system, and one or more measurements related to the state of the communication system. The one or more processors are then configured to estimate a plurality of disturbance values to the communication system according to the one or more measurements and the second indication. Each disturbance value is associated with a set of components of the communication system. The one or more processors are configured to adjust a beam divergence of a beacon beam or a communication beam transmitted from the communication system based on the plurality of disturbance values and the first indication.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 5, 2021
    Assignee: X DEVELOPMENT LLC
    Inventors: Travis Lantz, Paul Csonka, Bruce Moision
  • Patent number: 10841015
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: November 17, 2020
    Assignee: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Publication number: 20200266889
    Abstract: The disclosure provides for a communication system that includes one or more sensors and one or more processors. The one or more processors are configured to receive, during a first timeframe, a first indication of an error rate of a communication link, a second indication of an amount of received power at a remote communication system, and one or more measurements related to the state of the communication system. The one or more processors are then configured to estimate a plurality of disturbance values to the communication system according to the one or more measurements and the second indication. Each disturbance value is associated with a set of components of the communication system. The one or more processors are configured to adjust a beam divergence of a beacon beam or a communication beam transmitted from the communication system based on the plurality of disturbance values and the first indication.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Travis Lantz, Paul Csonka, Bruce Moision
  • Publication number: 20200228209
    Abstract: An optical communication system includes an optical transmitter and one or more processors. The optical transmitter is configured to output an optical signal, and includes an average-power-limited optical amplifier, such as an erbium-doped fiber amplifier (EDFA). The one or more processors are configured to receive optical signal data related to a received power for a communication link from a remote communication system and determine that the optical signal data is likely to fall below a minimum received power within a time interval. In response to the determination, the one or more processors are configured to determine a duty cycle of the optical transmitter based on a minimum on-cycle length and a predicted EDFA output power and operate the optical transmitter using the determined duty cycle to transmit an on-cycle power that is no less than the minimum required receiver power for error-free operation of the communication link.
    Type: Application
    Filed: August 1, 2019
    Publication date: July 16, 2020
    Inventors: Bruce Moision, Devin Brinkley, Baris Ibrahim Erkmen
  • Publication number: 20200228201
    Abstract: The disclosure provides a communication system that includes sensors, a plurality of components, and processors. The sensors receive measurements related to a state of the communication system. The processors receive an indication of an amount of received power at a remote communication system and estimate a state of the plurality of components based on the received one or more measurements and the received indication. Using the indication and the estimated state, the processors determine whether the amount of received power is likely to fall below a minimum received power within a given time interval. When it is likely, the processors select an adjustment technique of a plurality of adjustment techniques for adjusting a data rate of the outbound signal and adjust a given component of the communication system using the selected adjustment technique to change the data rate of the outbound signal.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Devin Brinkley, Bruce Moision, Paul Csonka, Baris Erkmen
  • Patent number: 10708009
    Abstract: Aspects of the disclosure provide techniques for automatic repeat request (ARQ) in a free-space optical communication (FSOC) architecture. These techniques, including block-selective ARQ, adaptive retransmission delay, and random seed scrambling, can be used individually or in combination to combat problems involving frame loss or corruption. These techniques enable the system to rapidly recover by streamlining the retransmission process. For instance, block-selective ARQ acknowledges variable length blocks of frames in the return stream from the receiver to the transmitter. Adaptive retransmission delay allows the retransmission delay to grow in the absence of feedback by the receiver, up to some defined limit. And with random seed sampling, a scrambling sequence is incorporated to aid with frame syncing, which avoids the need for a line code. These aspects of the technology provide a robust communication process, and also reduce overhead costs associated with unnecessary retransmissions.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 7, 2020
    Assignee: X Development LLC
    Inventors: Bruce Moision, Edward Keyes, Oliver Bowen, Devin Brinkley, Baris Erkmen
  • Patent number: 10686521
    Abstract: The disclosure provides for a communication system that includes one or more sensors and one or more processors. The one or more processors are configured to receive, during a first timeframe, a first indication of an error rate of a communication link, a second indication of an amount of received power at a remote communication system, and one or more measurements related to the state of the communication system. The one or more processors are then configured to estimate a plurality of disturbance values to the communication system according to the one or more measurements and the second indication. Each disturbance value is associated with a set of components of the communication system. The one or more processors are configured to adjust a beam divergence of a beacon beam or a communication beam transmitted from the communication system based on the plurality of disturbance values and the first indication.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 16, 2020
    Assignee: X Development LLC
    Inventors: Travis Lantz, Paul Csonka, Bruce Moision
  • Publication number: 20200177324
    Abstract: Aspects of the disclosure provide techniques for automatic repeat request (ARQ) in a free-space optical communication (FSOC) architecture. These techniques, including block-selective ARQ, adaptive retransmission delay, and random seed scrambling, can be used individually or in combination to combat problems involving frame loss or corruption. These techniques enable the system to rapidly recover by streamlining the retransmission process. For instance, block-selective ARQ acknowledges variable length blocks of frames in the return stream from the receiver to the transmitter. Adaptive retransmission delay allows the retransmission delay to grow in the absence of feedback by the receiver, up to some defined limit. And with random seed sampling, a scrambling sequence is incorporated to aid with frame syncing, which avoids the need for a line code. These aspects of the technology provide a robust communication process, and also reduce overhead costs associated with unnecessary retransmissions.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventors: Bruce Moision, Edward Keyes, Oliver Bowen, Devin Brinkley, Baris Erkmen
  • Patent number: 10637570
    Abstract: The disclosure provides a communication system that includes sensors, a plurality of components, and processors. The sensors receive measurements related to a state of the communication system. The processors receive an indication of an amount of received power at a remote communication system and estimate a state of the plurality of components based on the received one or more measurements and the received indication. Using the indication and the estimated state, the processors determine whether the amount of received power is likely to fall below a minimum received power within a given time interval. When it is likely, the processors select an adjustment technique of a plurality of adjustment techniques for adjusting a data rate of the outbound signal and adjust a given component of the communication system using the selected adjustment technique to change the data rate of the outbound signal.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 28, 2020
    Assignee: X DEVELOPMENT LLC
    Inventors: Devin Brinkley, Bruce Moision, Paul Csonka, Baris Erkmen
  • Patent number: 10594448
    Abstract: Aspects of the disclosure provide techniques for automatic repeat request (ARQ) in a free-space optical communication (FSOC) architecture. These techniques, including block-selective ARQ, adaptive retransmission delay, and random seed scrambling, can be used individually or in combination to combat problems involving frame loss or corruption. These techniques enable the system to rapidly recover by streamlining the retransmission process. For instance, block-selective ARQ acknowledges variable length blocks of frames in the return stream from the receiver to the transmitter. Adaptive retransmission delay allows the retransmission delay to grow in the absence of feedback by the receiver, up to some defined limit. And with random seed sampling, a scrambling sequence is incorporated to aid with frame syncing, which avoids the need for a line code. These aspects of the technology provide a robust communication process, and also reduce overhead costs associated with unnecessary retransmissions.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 17, 2020
    Assignee: X DEVELOPMENT LLC
    Inventors: Bruce Moision, Edward Keyes, Oliver Bowen, Devin Brinkley, Baris Erkmen