Patents by Inventor Bruce R. RITZI

Bruce R. RITZI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125927
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: June 7, 2023
    Publication date: April 18, 2024
    Inventors: Josef R. CALL, Henry A. DAVIS, David M. SMITH, David J. SPECHT, Viet Nam LE, Lang J. MCHARDY, Joseph James DIGIOVANNI, II, Nathan W. OSBORN, Bruce R. RITZI
  • Publication number: 20240081787
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Donald F. SPECHT, Kenneth D. BREWER, David M. SMITH, Josef R. CALL, Viet Nam LE, Bruce R. RITZI
  • Publication number: 20240000435
    Abstract: Systems and methods are provided for improving ultrasound image quality. In some embodiments, data sets can be formed from received echoes at each of a plurality of receive elements. The data between the data sets can be masked to include or exclude data. The masked data sets can then be beamformed to form ultrasound images.
    Type: Application
    Filed: November 2, 2021
    Publication date: January 4, 2024
    Inventors: Elias M. ATMEH, Bruce R. RITZI, David J. SPECHT
  • Patent number: 11826204
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 28, 2023
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer, David M. Smith, Josef R. Call, Viet Nam Le, Bruce R. Ritzi
  • Publication number: 20230248333
    Abstract: Systems and methods of ultrasound imaging are provided. In some embodiments, unfocused and diverging ultrasound signals can be transmitted into a target medium from an apparent point source located aft of a concave probe surface. The echoes can be received, and a location of a reflector within the target medium can be determined. The location can be determined by obtaining element position data describing a position of the spherical center point of the apparent point source r and a position of the receive element, calculating a total path distance as a sum of a first distance between the spherical center point and the reflector and a second distance between the reflector and the receive element, and determining a locus of possible points at which the reflector may lie. A data set can then be produced for the entire target medium.
    Type: Application
    Filed: February 6, 2023
    Publication date: August 10, 2023
    Inventors: Sateesh BAJIKAR, Elias M. ATMEH, Bruce R. RITZI, David J. SPECHT
  • Patent number: 11709265
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 25, 2023
    Assignee: Maui Imaging, Inc.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Publication number: 20220167949
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Artem BELEVICH, Josef R. CALL, Bruce R. RITZI, Nathan W. OSBORN
  • Patent number: 11253233
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: February 22, 2022
    Assignee: MAUI IMAGING, INC.
    Inventors: Artem Belevich, Josef R. Call, Bruce R. Ritzi, Nathan W. Osborn
  • Publication number: 20210278531
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Josef R. CALL, Henry A. DAVIS, David M. SMITH, David J. SPECHT, Viet Nam LE, Lang J. McHARDY, Joseph James DIGIOVANNI, II, Nathan W. OSBORN, Bruce R. RITZI
  • Patent number: 11016191
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: May 25, 2021
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Patent number: 10617384
    Abstract: Systems and methods of M-mode ultrasound imaging allows for M-mode imaging along user-defined paths. In various embodiments, the user-defined path can be a non-linear path or a curved path. In some embodiments, a system for M-mode ultrasound imaging can comprise a multi-aperture probe with at least a first transmitting aperture and a second receiving aperture. The receiving aperture can be separate from the transmitting aperture. In some embodiments, the transmitting aperture can be configured to transmit an unfocused, spherical, ultrasound ping signal into a region of interest. The user-defined path can define a structure of interest within the region of interest.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 14, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: Kenneth D. Brewer, David M. Smith, Rozalin M. Lorenzato, Bruce R. Ritzi
  • Publication number: 20200003896
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Patent number: 10401493
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 3, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Publication number: 20190200961
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to predefine range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: Donald F. SPECHT, Kenneth D. BREWER, David M. SMITH, Josef R. CALL, Viet Nam LE, Bruce R. RITZI
  • Patent number: 10226234
    Abstract: A method of full-field or “ping-based” Doppler ultrasound imaging allows for detection of Doppler signals indicating moving reflectors at any point in an imaging field without the need to pre-define range gates. In various embodiments, such whole-field Doppler imaging methods may include transmitting a Doppler ping from a transmit aperture, receiving echoes of the Doppler ping with one or more separate receive apertures, detecting Doppler signals and determining the speed of moving reflectors. In some embodiments, the system also provides the ability to determine the direction of motion by solving a set of simultaneous equations based on echo data received by multiple receive apertures.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 12, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Donald F. Specht, Kenneth D. Brewer, David M. Smith, Josef R. Call, Viet Nam Le, Bruce R. Ritzi
  • Publication number: 20190008487
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Application
    Filed: September 4, 2018
    Publication date: January 10, 2019
    Inventors: Artem BELEVICH, Josef R. CALL, Bruce R. RITZI, Nathan W. OSBORN
  • Patent number: 10064605
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: September 4, 2018
    Assignee: MAUI IMAGING, INC.
    Inventors: Artem Belevich, Josef R. Call, Bruce R. Ritzi, Nathan W. Osborn
  • Publication number: 20170219704
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: August 18, 2015
    Publication date: August 3, 2017
    Inventors: Josef R. CALL, Henry A. DAVIS, David M. SMITH, David J. SPECHT, Viet Nam LE, Lang J. MCHARDY, Joseph James DIGIOVANNI, II, Nathan W. OSBORN, Bruce R. RITZI
  • Publication number: 20170112476
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Inventors: Artem BELEVICH, Josef R. CALL, Bruce R. RITZI, Nathan W. OSBORN
  • Patent number: 9572549
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 21, 2017
    Assignee: MAUI IMAGING, INC.
    Inventors: Artem Belevich, Josef R. Call, Bruce R. Ritzi, Nathan W. Osborn