Patents by Inventor Bruce S. Dunn

Bruce S. Dunn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220105199
    Abstract: A sol-gel vault which comprises a complex between a vault particle and a sol-gel. The vault particle comprises one or more one or more passenger molecules. At least one of the one or more passenger molecules is an mINT passenger molecule. At least one of the one or more passenger molecules is a protein. At least one of the one or more passenger molecules is an enzyme. The sol-gel is a silica-based sol-gel.
    Type: Application
    Filed: February 22, 2020
    Publication date: April 7, 2022
    Inventors: Leonard H. Rome, Ph.D., Shaily Mahendra, Meng Wang, Valerie Ann Kickhoefer, Esther Hui-Jen Lan, Bruce S. Dunn
  • Publication number: 20210207428
    Abstract: Materials and methods for preparing thick, mesoporous silica monolithic slabs and coatings with high transparency and low thermal conductivity are provided. The transparent silica materials are particularly suited for window or solar applications including insulation barriers for existing or new single, double pane windows or glass panel building components. The template-free, water-based sol-gel methods produce slabs or coatings by gelation of a colloidal suspension of silica or other oxide nanoparticles or by ambigel formation and then ageing and drying the gels under ambient conditions. Solvent exchanges with nonpolar, low-surface-tension solvents help to avoid cracking caused by drying stress. Mesoporous slabs can also be cast in molds on perfluorocarbon liquid substrates to reduce adhesion and enable gels to shrink freely during aging and drying without incurring significant stress that could cause fracture.
    Type: Application
    Filed: December 10, 2020
    Publication date: July 8, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Laurent Pilon, Bruce S. Dunn, Sarah H. Tolbert, Michal Marszewski, Yan Yan, Sophia C. King, Esther H. Lan, Danielle Butts, Patricia E. McNeil
  • Publication number: 20210066721
    Abstract: By mixing Poly (3-hexylthiophene-2,5-diyl) (P3HT) with carbon nanotubes (CNT), the resultant mixture of P3HT-CNT serves as a surface coating for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA) and offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, Chun-Han Lai, David S. Ashby, Terri C. Lin, Jonathan Lau, Andrew Dawson
  • Publication number: 20210035746
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: July 2, 2020
    Publication date: February 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 10741337
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: August 11, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 10734649
    Abstract: A synthetic metal dichalcogenide having a highly defected nanocrystalline layered structure, wherein layer spacing is larger than in perfect crystals of the same material, wherein the defected structure provides access to interlayer crystals of the same material, and wherein the defected structure facilitates a pseudocapacitive charge storage mechanism. The metal dichalcogenide is receptive to intercalation of ions such as Li ions, Na ions, Mg ions, and Ca ions, and does not undergo a phase transition upon intercalation of Li ions, Na ions, Mg ions, or Ca ions. The metal dichalcogenide can be used, for example, as a component of an electrode that also includes a carbon derivative, and a binder, which are intermixed to form the electrode. The resultant composite electrode is highly porous and highly electronically conductive, and is suitable for use in devices such as symmetric capacitors, asymmetric capacitors, rocking chair batteries, and other devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 4, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Sarah H. Tolbert, Bruce S. Dunn, John Cook, Hyungseok Kim, Terri Chai Lin
  • Patent number: 10566617
    Abstract: Disclosed is a microbattery having a substrate with a surface that includes an array of posts extending from the surface of the substrate to form a first electrode. An selectively-cured electrolyte forms a conformal coating over the surface of the substrate and the array of posts to provide a coated electrode. A second electrode substantially encases the coated electrode.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: February 18, 2020
    Assignee: The Regents of the University of California
    Inventors: Janet Hur, Leland Smith, Bruce S. Dunn, Chang-Jin Kim
  • Publication number: 20180277314
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: March 13, 2018
    Publication date: September 27, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Publication number: 20180241035
    Abstract: Disclosed is a microbattery having a substrate with a surface that includes an array of posts extending from the surface of the substrate to form a first electrode. An selectively-cured electrolyte forms a conformal coating over the surface of the substrate and the array of posts to provide a coated electrode. A second electrode substantially encases the coated electrode.
    Type: Application
    Filed: March 2, 2016
    Publication date: August 23, 2018
    Inventors: Janet Hur, Leland Smith, Bruce S. Dunn, Chang-Jin Kim
  • Patent number: 10056199
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: August 21, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Publication number: 20180005770
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: April 6, 2017
    Publication date: January 4, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Publication number: 20170162875
    Abstract: A synthetic metal dichalcogenide having a highly defected nanocrystalline layered structure, wherein layer spacing is larger than in perfect crystals of the same material, wherein the defected structure provides access to interlayer crystals of the same material, and wherein the defected structure facilitates a pseudocapacitive charge storage mechanism. The metal dichalcogenide is receptive to intercalation of ions such as Li ions, Na ions, Mg ions, and Ca ions, and does not undergo a phase transition upon intercalation of Li ions, Na ions, Mg ions, or Ca ions. The metal dichalcogenide can be used, for example, as a component of an electrode that also includes a carbon derivative, and a binder, which are intermixed to form the electrode. The resultant composite electrode is highly porous and highly electronically conductive, and is suitable for use in devices such as symmetric capacitors, asymmetric capacitors, rocking chair batteries, and other devices.
    Type: Application
    Filed: November 23, 2016
    Publication date: June 8, 2017
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Sarah H. Tolbert, Bruce S. Dunn, John Cook, Hyungseok Kim, Terri Chai Lin
  • Patent number: 9653219
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 16, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 9570244
    Abstract: Embodiments of the present disclosure relate to a solid-state supercapacitor. The solid-state supercapacitor includes a first electrode, a second electrode, and a solid-state ionogel structure between the first electrode and the second electrode. The solid-state ionogel structure prevents direct electrical contact between the first electrode and the second electrode. Further, the solid-state ionogel structure substantially fills voids inside the first electrode and the second electrode.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: February 14, 2017
    Assignee: The Regents of the University of California
    Inventors: Bruce S. Dunn, Chi On Chui, Ajey Poovannummoottil Jacob, Daniel Membreno, Leland Smith
  • Publication number: 20160225542
    Abstract: Embodiments of the present disclosure relate to a solid-state supercapacitor. The solid-state supercapacitor includes a first electrode, a second electrode, and a solid-state ionogel structure between the first electrode and the second electrode. The solid-state ionogel structure prevents direct electrical contact between the first electrode and the second electrode. Further, the solid-state ionogel structure substantially fills voids inside the first electrode and the second electrode.
    Type: Application
    Filed: November 13, 2014
    Publication date: August 4, 2016
    Applicant: INTEL CORPORATION
    Inventors: Bruce S. Dunn, Chi On Chui, Ajey Poovannummoottil Jacob, Daniel Membreno, Leland Smith
  • Publication number: 20160156066
    Abstract: Thin polymer layers for use as electrolytes in electrochemical cells, and associated electrochemical cells and methods, are generally described. The thin polymer layers may be formed by initiated chemical vapor deposition (iCVD) and may be doped with an electroactive species (e.g., Li+). The resultant thin polymer layers may exhibit high ionic conductivity and an ability to conformally coat structures having complex geometries (e.g., electrodes having high aspect ratios).
    Type: Application
    Filed: October 20, 2015
    Publication date: June 2, 2016
    Applicants: Massachusetts Institute of Technology, The Regents of the University of California
    Inventors: Karen K. Gleason, Nan Chen, Baby Reeja Jayan, Andong Liu, Bruce S. Dunn, Priya Moni
  • Patent number: 9245694
    Abstract: Embodiments of the present disclosure relate to a solid-state supercapacitor. The solid-state supercapacitor includes a first electrode, a second electrode, and a solid-state ionogel structure between the first electrode and the second electrode. The solid-state ionogel structure prevents direct electrical contact between the first electrode and the second electrode. Further, the solid-state ionogel structure substantially fills voids inside the first electrode and the second electrode.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: January 26, 2016
    Assignees: The Regents of the University of California, Intel Corporation
    Inventors: Bruce S. Dunn, Chi On Chui, Ajey Poovannummoottil Jacob, Daniel Membreno, Leland Smith
  • Publication number: 20150207171
    Abstract: Embodiments of a 3D micro-battery structure are disclosed. The 3D micro-battery structure includes an electrode micro-structure and a thin film electrolyte. The electrode micro-structure includes a base and a group of electrodes extending from the base. The thin film electrolyte conformally coats each of the group of electrodes to form a group of coated electrodes, such that the thin film electrolyte is ionically conducting and is electrically insulating.
    Type: Application
    Filed: August 16, 2013
    Publication date: July 23, 2015
    Inventors: Jane P. Chang, Bruce S. Dunn, Ya-Chuan Perng, Jea Cho, Chang-Jin Kim, Sarah Helen Tolbert, Robert James Thompson
  • Publication number: 20140301020
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Application
    Filed: February 5, 2014
    Publication date: October 9, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 8675346
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski