Patents by Inventor Bruce Woodley

Bruce Woodley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12178752
    Abstract: A laser system is calibrated with a tomography system capable of measuring locations of structure within an optically transmissive material such as a tissue of an eye. Alternatively or in combination, the tomography system can be used to track the location of the eye and adjust the treatment in response to one or more of the location or an orientation of the eye. In many embodiments, in situ calibration and tracking of an optically transmissive tissue structure such as an eye can be provided. The optically transmissive material may comprise one or more optically transmissive structures of the eye, or a non-ocular optically transmissive material such as a calibration gel in a container or an optically transmissive material of a machined part.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 31, 2024
    Assignee: AMO Development, LLC
    Inventors: Bruce Woodley, Javier Gonzalez
  • Publication number: 20240366085
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: July 12, 2024
    Publication date: November 7, 2024
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20240277526
    Abstract: The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.
    Type: Application
    Filed: April 18, 2024
    Publication date: August 22, 2024
    Inventors: David Angeley, Bruce Woodley, David Dewey, Michael Simoneau, Georg Schuele, Gloria Londono
  • Patent number: 12053416
    Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
    Type: Grant
    Filed: September 8, 2023
    Date of Patent: August 6, 2024
    Assignee: AMO Development, LLC
    Inventors: Javier Gonzalez, Bruce Woodley
  • Patent number: 12042228
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: July 23, 2024
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Patent number: 11963909
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 23, 2024
    Assignee: AMO Development, LLC
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Patent number: 11963908
    Abstract: The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: April 23, 2024
    Assignee: AMO Development, LLC
    Inventors: David Angeley, Bruce Woodley, David Dewey, Michael Simoneau, Georg Schuele, Gloria Londono
  • Publication number: 20230414414
    Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Javier Gonzalez, Bruce Woodley
  • Publication number: 20230389797
    Abstract: Methods and systems for planning and forming incisions in a cornea, lens capsule, and/or crystalline lens nucleus are disclosed. A method includes measuring spatial dispositions, relative to a laser surgery system, of at least portions of the corneal anterior and posterior surfaces. A spatial disposition of an incision of the cornea is generated based at least in part on the measured corneal anterior and posterior spatial dispositions and at least one corneal incision parameter. A composite image is displayed that includes an image representative of the measured corneal anterior and posterior surfaces and an image representing the corneal incision.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Inventors: Bruce Woodley, Javier Gonzalez, Katrina Bell Sheehy, Daniel Oliveira Santos, Darrel Q. Pham, Paul Daniel Gallagher, Lawrence Edward Miller
  • Patent number: 11752037
    Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: September 12, 2023
    Assignee: AMO Development, LLC
    Inventors: Javier Gonzalez, Bruce Woodley
  • Patent number: 11730369
    Abstract: Methods and systems for planning and forming incisions in a cornea, lens capsule, and/or crystalline lens nucleus are disclosed. A method includes measuring spatial dispositions, relative to a laser surgery system, of at least portions of the corneal anterior and posterior surfaces. A spatial disposition of an incision of the cornea is generated based at least in part on the measured corneal anterior and posterior spatial dispositions and at least one corneal incision parameter. A composite image is displayed that includes an image representative of the measured corneal anterior and posterior surfaces and an image representing the corneal incision.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: August 22, 2023
    Assignee: AMO Development, LLC
    Inventors: Bruce Woodley, Javier Gonzalez, Katrina Bell Sheehy, Daniel Oliveira Santos, Darrel Q. Pham, Paul Daniel Gallagher, Lawrence Edward Miller
  • Publication number: 20230201038
    Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: Javier Gonzalez, Bruce Woodley
  • Patent number: 11540945
    Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 3, 2023
    Assignee: AMO Development, LLC
    Inventors: Javier G. Gonzalez, Bruce Woodley
  • Publication number: 20220110520
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Patent number: 11229357
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 25, 2022
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Publication number: 20210322211
    Abstract: A laser system is calibrated with a tomography system capable of measuring locations of structure within an optically transmissive material such as a tissue of an eye. Alternatively or in combination, the tomography system can be used to track the location of the eye and adjust the treatment in response to one or more of the location or an orientation of the eye. In many embodiments, in situ calibration and tracking of an optically transmissive tissue structure such as an eye can be provided. The optically transmissive material may comprise one or more optically transmissive structures of the eye, or a non-ocular optically transmissive material such as a calibration gel in a container or an optically transmissive material of a machined part.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Bruce Woodley, Javier Gonzalez
  • Publication number: 20210307606
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 7, 2021
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Patent number: 11051983
    Abstract: A laser system is calibrated with a tomography system capable of measuring locations of structure within an optically transmissive material such as a tissue of an eye. Alternatively or in combination, the tomography system can be used to track the location of the eye and adjust the treatment in response to one or more of the location or an orientation of the eye. In many embodiments, in situ calibration and tracking of an optically transmissive tissue structure such as an eye can be provided. The optically transmissive material may comprise one or more optically transmissive structures of the eye, or a non-ocular optically transmissive material such as a calibration gel in a container or an optically transmissive material of a machined part.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: July 6, 2021
    Assignee: AMO Development, LLC
    Inventors: Bruce Woodley, Javier Gonzalez
  • Publication number: 20200329970
    Abstract: Methods and systems for planning and forming incisions in a cornea, lens capsule, and/or crystalline lens nucleus are disclosed. A method includes measuring spatial dispositions, relative to a laser surgery system, of at least portions of the corneal anterior and posterior surfaces. A spatial disposition of an incision of the cornea is generated based at least in part on the measured corneal anterior and posterior spatial dispositions and at least one corneal incision parameter. A composite image is displayed that includes an image representative of the measured corneal anterior and posterior surfaces and an image representing the corneal incision.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: Bruce Woodley, Javier Gonzalez, Katrina Bell Sheehy, Daniel Oliveira Santos, Darrel Q. Pham, Paul Daniel Gallagher, Lawrence Edward Miller
  • Patent number: 10702209
    Abstract: Methods and systems for planning and forming incisions in a cornea, lens capsule, and/or crystalline lens nucleus are disclosed. A method includes measuring spatial dispositions, relative to a laser surgery system, of at least portions of the corneal anterior and posterior surfaces. A spatial disposition of an incision of the cornea is generated based at least in part on the measured corneal anterior and posterior spatial dispositions and at least one corneal incision parameter. A composite image is displayed that includes an image representative of the measured corneal anterior and posterior surfaces and an image representing the corneal incision.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 7, 2020
    Assignee: AMO Development, LLC
    Inventors: Bruce Woodley, Javier Gonzalez, Katrina Bell Sheehy, Daniel Oliveira Santos, Darrel Q. Pham, Paul Daniel Gallagher, Lawrence Edward Miller