Patents by Inventor Bruke JOFORE

Bruke JOFORE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11560477
    Abstract: A particulate material useful for additive manufacturing contains a semicrystalline polycarbonate or a semicrystalline polyetherimide. The particles of the particulate material are characterized by a narrow volume-based distribution of equivalent spherical diameters in which the median equivalent spherical diameter (Dv50) M is in the range 35 to 85 micrometers, the equivalent spherical diameter corresponding to 1 percent of the cumulative undersize distribution (DvO1) is greater than 2 micrometers, and the equivalent spherical diameter corresponding to 99 percent of the cumulative undersize distribution (Dv99) is less than 115 micrometers. Also described is a method of additive manufacturing utilizing the particulate material.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: January 24, 2023
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Brian Price, Bruke Jofore
  • Patent number: 11512169
    Abstract: A semicrystalline polyphenylsulfone, has the structure Formula (I) wherein n and R are defined herein. The semicrystalline polyphenylsulfone, which exhibits a crystalline melting point in a range of 215 to 270° C., can be prepared from amorphous polyphenylsulfone using a solvent-induced crystallization method. An additive manufacturing method utilizing particles of the semicrystalline polyphenylsulfone is described.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 29, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Elena Miloskovska, Bruke Jofore, Robert Russell Gallucci
  • Patent number: 11427722
    Abstract: Provided are compositions including a population of particulates that comprise an at least partially crystalline polycarbonate having an average cross-sectional dimension of from about 1 to about 200 ?m, and have a weight-average molecular weight, per polystyrene standards, of from about 17,000 to about 40,000 Daltons. The composition exhibits a zero-shear viscosity of less than about 104 Pa·s at the melting temperature of the partially crystalline polycarbonate. Related systems and methods for utilizing these compositions in additive manufacturing applications, including selective laser sintering (SLS) applications, are also disclosed. Also provided are additively-manufactured articles made with the disclosed compositions and according to the disclosed methods.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: August 30, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Vandita Pai-Paranjape, Elena Miloskovska, Bruke Jofore, Raul Fernandez Cabello, Hao Gu
  • Publication number: 20220204758
    Abstract: A particulate material useful for additive manufacturing contains a semicrystalline polycarbonate or a semicrystalline polyetherimide. The particles of the particulate material are characterized by a narrow volume-based distribution of equivalent spherical diameters in which the median equivalent spherical diameter (Dv50) M is in the range 35 to 85 micrometers, the equivalent spherical diameter corresponding to 1 percent of the cumulative undersize distribution (DvO1) is greater than 2 micrometers, and the equivalent spherical diameter corresponding to 99 percent of the cumulative undersize distribution (Dv99) is less than 115 micrometers. Also described is a method of additive manufacturing utilizing the particulate material.
    Type: Application
    Filed: July 29, 2020
    Publication date: June 30, 2022
    Inventors: Brian Price, Bruke Jofore
  • Patent number: 11352498
    Abstract: Provided are amorphous and at least partially crystalline polyetherimide compositions having a comparatively narrow particle size distribution and are particularly suited for additive manufacturing processes. The compositions comprise a population of polyetherimide particulates are characterized as having a zero-shear viscosity sufficiently low so as to achieve a coalescence of at least 0.5, and preferably of about 1.0, as characterized by the Frenkel model at a temperature less than 450° C.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 7, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Brian Gray Price, Elena Miloskovska, Bruke Jofore, Raul Fernandez Cabello, Hao Gu, Vandita Pai-Paranjape, Viswanathan Kalyanaraman
  • Publication number: 20220081578
    Abstract: Provided are compositions including a population of particulates that comprise an at least partially crystalline polycarbonate having an average cross-sectional dimension of from about 1 to about 200 ?m, and have a weight-average molecular weight, per polystyrene standards, of from about 17,000 to about 40,000 Daltons. The composition exhibits a zero-shear viscosity of less than about 104 Pa·s at the melting temperature of the partially crystalline polycarbonate. Related systems and methods for utilizing these compositions in additive manufacturing applications, including selective laser sintering (SLS) applications, are also disclosed. Also provided are additively-manufactured articles made with the disclosed compositions and according to the disclosed methods.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 17, 2022
    Inventors: VANDITA PAI-PARANJAPE, ELENA MILOSKOVSKA, BRUKE JOFORE, RAUL FERNANDEZ CABELLO, HAO GU
  • Patent number: 11230646
    Abstract: Provided are compositions comprising partially crystalline polycarbonate particulate having an average cross-sectional dimension of from about 1 ??? to about 200 ????, having from about 10% crystallinity to about 50% crystallinity, and having a weight-average molecular weight, per polystyrene standards, of from about 17,000 to about 40,000 Daltons. The composition exhibits a zero-shear viscosity of less than about 104 Pa s at the melting temperature of the partially crystalline polycarbonate. Related systems and methods for utilizing these compositions in additive manufacturing applications, including selective laser sintering (SLS) applications, are also disclosed. Also provided are additively-manufactured articles made with the disclosed compositions and according to the disclosed methods.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: January 25, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Vandita Pai-Paranjape, Elena Miloskovska, Bruke Jofore, Raul Fernandez Cabello, Hao Gu
  • Patent number: 11186717
    Abstract: Provided are thermoplastic-nanoparticle compositions that exhibit enhanced powder and melt flow. The disclosed compositions, comprising nanoparticles being silylated, have particular application in additive manufacturing processes, such as selective laser sintering and other processes.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: November 30, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Chiel Albertus Leenders, Samuel Ijsselmuiden, Johannes Gerardus Petrus Goossens, Bruke Jofore, Hao Gu
  • Publication number: 20210340328
    Abstract: A semicrystalline polyphenylsulfone, has the structure Formula (I) wherein n and R are defined herein. The semicrystalline polyphenylsulfone, which exhibits a crystalline melting point in a range of 215 to 270° C., can be prepared from amorphous polyphenylsulfone using a solvent-induced crystallization method. An additive manufacturing method utilizing particles of the semicrystalline polyphenylsulfone is described.
    Type: Application
    Filed: June 26, 2019
    Publication date: November 4, 2021
    Inventors: Elena MILOSKOVSKA, Bruke JOFORE, Robert Russell GALLUCCI
  • Patent number: 11141913
    Abstract: A composition for use in powder bed fusion includes a thermoplastic powder that itself includes an induced crystalline polycarbonate or an induced crystalline polyetherimide. The thermoplastic powder is recycled powder, which means that it is recovered from a powder bed that had undergone a powder bed fusion process. Also described is a method of making an article, the method including: placing an induced crystalline polymeric (polycarbonate or polyetherimide) powder in a powder bed, fusing a portion of the induced crystalline polymeric powder in the powder bed, recovering a least a portion of the crystalline polymeric powder from the powder bed, wherein the recovered powder is not fused, placing the recovered induced crystalline polymeric powder in a second powder bed, and fusing at least a portion of the recovered induced crystalline polymeric powder in the second powder bed to form an amorphous polymer article.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: October 12, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Elena Miloskovska, Bruke Jofore
  • Publication number: 20210130604
    Abstract: Provided are particulate compositions that include a matrix polymer and fibrillated reinforcement materials (e.g., PTFE or ultra-high molecular weight polyethylene fibrils) dispersed therein. The compositions are suitable for use in additive manufacturing processes.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 6, 2021
    Inventors: Vaidyanath RAMAKRISHNAN, Bruke JOFORE, Johannes Gerardus Petrus GOOSSENS, Hao GU, Johannes Martinus Dina GOOSSENS
  • Publication number: 20200276753
    Abstract: A composition for use in powder bed fusion includes a thermoplastic powder that itself includes an induced crystalline polycarbonate or an induced crystalline polyetherimide. The thermoplastic powder is recycled powder, which means that it is recovered from a powder bed that had undergone a powder bed fusion process. Also described is a method of making an article, the method including: placing an induced crystalline polymeric (polycarbonate or polyetherimide) powder in a powder bed, fusing a portion of the induced crystalline polymeric powder in the powder bed, recovering a least a portion of the crystalline polymeric powder from the powder bed, wherein the recovered powder is not fused, placing the recovered induced crystalline polymeric powder in a second powder bed, and fusing at least a portion of the recovered induced crystalline polymeric powder in the second powder bed to form an amorphous polymer article.
    Type: Application
    Filed: September 21, 2018
    Publication date: September 3, 2020
    Inventors: Elena Miloskovska, Bruke Jofore
  • Publication number: 20200180217
    Abstract: Provided are systems and methods for additive manufacturing, which systems and methods yield parts having improved interlayer adhesion. In the disclosed technology, additional heating steps are applied on the upper surface of the already printed workpiece so as to offset the dropping temperature of that surface during part fabrication. These heating steps elevate the temperature of the surface to a value that results in a molten interface with subsequently-applied build material, leading to improved interlayer adhesion. This technology is applicable to a variety of additive manufacturing processes, including but not limited to selective laser sintering, fused filament fabrication, and large format additive manufacturing approaches.
    Type: Application
    Filed: April 26, 2018
    Publication date: June 11, 2020
    Inventors: Elena MILOSKOVSKA, Bruke JOFORE, Hao GU, Raul FERNANDEZ CABELLO, Vandita PAI-PARANJAPE, Federico CACCAVALE, Brian PRICE
  • Publication number: 20200087513
    Abstract: Provided are amorphous and at least partially crystalline polyetherimide compositions having a comparatively narrow particle size distribution and are particularly suited for additive manufacturing processes. The compositions comprise a population of polyetherimide particulates are characterized as having a zero-shear viscosity sufficiently low so as to achieve a coalescence of at least 0.5, and preferably of about 1.0, as characterized by the Frenkel model at a temperature less than 450° C.
    Type: Application
    Filed: December 22, 2017
    Publication date: March 19, 2020
    Inventors: Brain Gray Price, Elena Miloskovska, Bruke Jofore, Raul Fernandez Cabello, Hao Gu, Vandita Pai-Paranjape, Viswanathan Kalyanaraman
  • Publication number: 20200048481
    Abstract: Provided are compositions comprising partially crystalline polycarbonate particulate having an average cross-sectional dimension of from about 1 ??? to about 200 ????, having from about 10% crystallinity to about 50% crystallinity, and having a weight-average molecular weight, per polystyrene standards, of from about 17,000 to about 40,000 Daltons. The composition exhibits a zero-shear viscosity of less than about 104 Pa s at the melting temperature of the partially crystalline polycarbonate. Related systems and methods for utilizing these compositions in additive manufacturing applications, including selective laser sintering (SLS) applications, are also disclosed. Also provided are additively-manufactured articles made with the disclosed compositions and according to the disclosed methods.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 13, 2020
    Inventors: VANDITA PAI-PARANJAPE, ELENA MILOSKOVSKA, BRUKE JOFORE, RAUL FERNANDEZ CABELLO, HAO GU
  • Publication number: 20190345644
    Abstract: Provided are fibers that comprise a matrix thermoplastic polymer and fibrillated reinforcement materials (e.g., PTFE fibrils) dispersed therein. The disclosed fibers exhibit improved processability and other improved handling characteristics as compared to fibril-free fibers.
    Type: Application
    Filed: December 21, 2017
    Publication date: November 14, 2019
    Inventors: Vaidyanath Ramakrishnan, Bruke Jofore, Johannes Gerardus Petrus Goossens, Johannes Martinus Dina Goossens
  • Publication number: 20180371244
    Abstract: Provided are thermoplastic-nanoparticle compositions that exhibit enhanced powder and melt flow. The disclosed compositions, comprising nanoparticles being silylated, have particular application in additive manufacturing processes, such as selective laser sintering and other processes.
    Type: Application
    Filed: December 20, 2016
    Publication date: December 27, 2018
    Inventors: Chiel Albertus LEENDERS, Samuel IJSSELMUIDEN, Johannes Gerardus Petrus GOOSENS, Bruke JOFORE, Hao GU