Patents by Inventor Bruno A. Nardelli

Bruno A. Nardelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230200371
    Abstract: An anti-torsion system and kit for spring-powered rodent traps. The system and kit make use of one or more torsion-blockers. Each torsion-blocker includes a substrate having a first surface and a second surface opposite the first surface, a first fastening mechanism on the first surface of the substrate attaching the torsion-blocker to the base of the rodent trap, and a second fastening mechanism on the second surface of the substrate attaching the torsion-blocker to a surface upon which the rodent trap base rests. When a rodent trap is mounted using the system, the one or more torsion-blockers oppose the torsion force and prevents the twisting movement of the rodent trap base caused by the acceleration and snapping down of the hammer motivated by the spring from occurring.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 29, 2023
    Inventor: Bruno A. Nardelli
  • Patent number: 11264938
    Abstract: A thermophotovoltaic panel assembly including a heat sink and a plurality of thermophotovoltaic modules mounted on the heat sink. Each thermophotovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The thermophotovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the thermophotovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 1, 2022
    Assignee: MTPV POWER CORPORATION
    Inventors: Brian N. Hubert, Bin Zhang, Eric L. Brown, Timothy R. Schuyler, David Mather, Paul Greiff, Christopher W. Melanson, Bruno A. Nardelli, Shannon J. Kovar, Trace W. Cody
  • Publication number: 20170229996
    Abstract: A photovoltaic panel assembly including a heat sink and a plurality of photovoltaic modules mounted on the heat sink. Each photovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The photovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the photovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 10, 2017
    Inventors: Brian N. Hubert, Bin Zhang, Eric L. Brown, Timothy R. Schuyler, DAvid Mather, Paul Greiff, Christopher W. Melanson, Bruno A. Nardelli, Shannon J. Kovar, Trace W. Cody
  • Patent number: 9088598
    Abstract: A method for detecting malicious servers. The method includes analyzing network traffic data to generate a main similarity measure and a secondary similarity measure for each server pair found in the network traffic data, extracting a main subset and a secondary subset of servers based on the main similarity measure and the secondary similarity measure, identifying a server that belongs to the main subset and the secondary subset, and determining a suspicious score of the server based on at least a first similarity density measure of the main subset, a second similarity density measure of the secondary subset, and a commonality measure of the main subset and the secondary subset.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: July 21, 2015
    Assignee: Narus, Inc.
    Inventors: Jialong Zhang, Sabyasachi Saha, Guofei Gu, Sung-Ju Lee, Bruno Nardelli
  • Patent number: 8791357
    Abstract: The present invention relates to micron-gap thermal photovoltaic (MTPV) technology for the solid-state conversion of heat to electricity. The problem is forming and then maintaining the close spacing between two bodies at a sub-micron gap in order to maintain enhanced performance. While it is possible to obtain the sub-micron gap spacing, the thermal effects on the hot and cold surfaces induce cupping, warping, or deformation of the elements resulting in variations in gap spacing thereby resulting in uncontrollable variances in the power output. A major aspect of the design is to allow for intimate contact of the emitter chips to the shell inside surface, so that there is good heat transfer. The photovoltaic cells are pushed outward against the emitter chips in order to press them against the inner wall. A high temperature thermal interface material improves the heat transfer between the shell inner surface and the emitter chip.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 29, 2014
    Assignee: MTPV Power Corporation
    Inventors: Eric L. Brown, Robert S. DiMatteo, Bruno A. Nardelli, Bin Peng, Xiao Li
  • Publication number: 20110315195
    Abstract: The present invention relates to micron-gap thermal photovoltaic (MTPV) technology for the solid-state conversion of heat to electricity. The problem is forming and then maintaining the close spacing between two bodies at a sub-micron gap in order to maintain enhanced performance. While it is possible to obtain the sub-micron gap spacing, the thermal effects on the hot and cold surfaces induce cupping, warping, or deformation of the elements resulting in variations in gap spacing thereby resulting in uncontrollable variances in the power output. A major aspect of the design is to allow for intimate contact of the emitter chips to the shell inside surface, so that there is good heat transfer. The photovoltaic cells are pushed outward against the emitter chips in order to press them against the inner wall. A high temperature thermal interface material improves the heat transfer between the shell inner surface and the emitter chip.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 29, 2011
    Applicant: MTPV Corporation
    Inventors: Eric L. Brown, Robert S. DiMatteo, Bruno A. Nardelli, Bin Peng, Xiao Li
  • Publication number: 20030063863
    Abstract: An apparatus and method for assembling and interconnecting stacked optoelectronic circuit boards is described. The circuit boards are rotatably attached using a mechanism such as a hinge. Transmission lines such as optical fibers interconnecting the boards are guided parallel to or on the rotational axis of the attachment for a portion of their length. Bending stress on fiber optic interconnects due to relative motion of the circuit boards is minimized. Signals can be transmitted between the boards at any angle within a rotational range about the axis. This enhances access to components on stacked circuit boards and allows service procedures to be carried out efficiently.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Inventors: Bruno Nardelli, Mark Lucas, Jeffery V. Bean