Patents by Inventor Bruno Bessette

Bruno Bessette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8892449
    Abstract: An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., VoiceAge Corporation
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Bruno Bessette, Bernhard Grill
  • Patent number: 8725503
    Abstract: The present invention relates to methods and devices for forward time-domain aliasing cancellation in a coded signal transmitted from a coder to a decoder. Information related to correction of the time-domain aliasing in the coded signal is calculated at the coder and added in a bitstream sent from the coder to the decoder. The decoder receives the bitstream and cancels the time-domain aliasing in the coded signal in response to the information comprised in the bitstream. The information may be representative of a difference between a frame of audio signal to be encoded in a first coding mode and a decoded signal from the frame including time-domain aliasing effects.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 13, 2014
    Assignee: VoiceAge Corporation
    Inventor: Bruno Bessette
  • Patent number: 8712764
    Abstract: A device and a method for quantizing, in a super-frame including a sequence of frames, LPC filters calculated during the frames of the sequence. The LPC filter quantizing device and method comprises: an absolute quantizer for first quantizing one of the LPC filters using absolute quantization; and at least one quantizer of the other LPC filters using a quantization mode selected from the group consisting of absolute quantization and differential quantization relative to at least one previously quantized filter amongst the LPC filters. For inverse quantizing, at least the first quantized LPC filter is received and an inverse quantizer inverse quantizes the first quantized LPC filter using absolute inverse quantization. If any quantized LPC filter other than the first quantized LPC filter is received, an inverse quantizer inverse quantizes this quantized LPC filter using one of absolute inverse quantization and differential inverse quantization relative to at least one previously received quantized LPC filter.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 29, 2014
    Assignee: Voiceage Corporation
    Inventors: Philippe Gournay, Bruno Bessette, Redwan Salami
  • Patent number: 8626517
    Abstract: A frequency-domain noise shaping method and device interpolates a spectral shape and a time-domain envelope of a quantization noise in a windowed and transform-coded audio signal. In the method and device, transform coefficients of the windowed and transform-coded audio signal are split into a plurality of spectral bands. For each spectral band, a first gain representing a spectral shape of the quantization noise at a first transition between a first time window and a second time window is calculated, a second gain representing a spectral shape of the quantization noise at a second transition between the second time window and a third time window is calculated, and the transform coefficients of the second time window are filtered based on the first and second gains, to interpolate between the first and second transitions the spectral shape and the time-domain envelope of the quantization noise.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 7, 2014
    Assignee: Voiceage Corporation
    Inventor: Bruno Bessette
  • Patent number: 8595019
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 26, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Voiceage Corporation
    Inventors: Ralf Geiger, Bernhard Grill, Bruno Bessette, Philippe Gournay, Guillaume Fuchs, Markus Multrus, Max Neuendorf, Gerald Schuller
  • Patent number: 8484038
    Abstract: An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 9, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation, Koninklijke Philips Electronics N.V., Dolby International AB
    Inventors: Bruno Bessette, Max Neuendorf, Ralf Geiger, Philippe Gournay, Roch Lefebvre, Bernhard Grill, Jeremie Lecomte, Stefan Bayer, Nikolaus Rettelbach, Lars Villemoes, Redwan Salami, Albertus C. Den Brinker
  • Patent number: 8332213
    Abstract: A multi-reference quantization device and method for quantizing an input LPC filter, comprises a plurality of differential quantizers using respective, different references, and a selector of a reference amongst the different references of the differential quantizers using a reference selection criterion. The input LPC filter is differentially quantized by the differential quantizer using the selected reference. A device and method for inverse quantizing a multi-reference differentially quantized LPC filter extracted from a bitstream, comprises an extractor from the bitstream of information about a reference amongst a plurality of possible references used for quantizing the multi-reference differentially quantized LPC filter, and a differential inverse quantizer using the reference corresponding to the extracted reference information to inverse quantize the multi-reference differentially quantized LPC filter.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: December 11, 2012
    Assignee: VoiceAge Corporation
    Inventors: Philippe Gournay, Bruno Bessette, Redwan Salami
  • Patent number: 8321210
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 27, 2012
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20120271644
    Abstract: An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Inventors: Bruno Bessette, Max Neuendorf, Ralf Geiger, Philippe Gournay, Roch Lefebvre, Bernhard Grill, Jeremie Lecomte, Stefan Bayer, Nikolaus Rettelbach, Lars Villemoes, Redwan Salami, Albertus C. Den Brinker
  • Publication number: 20120089389
    Abstract: In a CELP coder, a combined innovation codebook coding device comprises a pre-quantizer of a first, adaptive-codebook excitation residual, and a CELP innovation-codebook search module responsive to a second excitation residual produced from the first, adaptive-codebook excitation residual. In a CELP decoder, a combined innovation codebook comprises a de-quantizer of pre-quantized coding parameters into a first excitation contribution, and a CELP innovation-codebook structure responsive to CELP innovation-codebook parameters to produce a second excitation contribution.
    Type: Application
    Filed: April 11, 2011
    Publication date: April 12, 2012
    Inventor: Bruno Bessette
  • Publication number: 20120022880
    Abstract: In a coder, a method for producing forward aliasing cancellation (FAC) parameters for cancelling time-domain aliasing caused to a coded audio signal in a first transform-coded frame by a transition between the first transform-coded frame using a first coding mode with overlapping window and a second frame using a second coding mode with non-overlapping window, comprising: calculating a FAC target representative of a difference between the audio signal of the first frame prior to coding and a synthesis of the coded audio signal of the first transform-coded frame; and weighting the FAC target to produce the FAC parameters. In a decoder, weighted forward aliasing cancellation (FAC) parameters are received and inverse weighted to produce a FAC synthesis. Upon synthesis of the coded audio signal in the first frame, the time-domain aliasing is cancelled from the audio signal synthesis using the FAC synthesis.
    Type: Application
    Filed: January 13, 2011
    Publication date: January 26, 2012
    Inventor: Bruno Bessette
  • Patent number: 8036885
    Abstract: A pitch search method and device for digitally encoding a wideband signal, in particular but not exclusively a speech signal, in view of transmitting, or storing, and synthesizing this wideband sound signal. The new method and device which achieve efficient modeling of the harmonic structure of the speech spectrum uses several forms of low pass filters applied to a pitch codevector, the one yielding higher prediction gain (i.e. the lowest pitch prediction error) is selected and the associated pitch codebook parameters are forwarded.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: October 11, 2011
    Assignee: Voiceage Corp.
    Inventors: Bruno Bessette, Redwan Salami, Roch Lefebvre
  • Publication number: 20110202354
    Abstract: An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and wherein the second encoding branch furthermore has a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach
  • Publication number: 20110202355
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20110173011
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Ralf Geiger, Bernhard Grill, Bruno Bessette, Philippe Gournay, Guillaume Fuchs, Markus Multrus, Max Neuendorf, Gerald Schuller
  • Publication number: 20110173004
    Abstract: A device and method for shaping noise during encoding of an input sound signal comprise pre-emphasizing the input signal or a decoded signal from a given sound signal codec to produce a pre-emphasized signal, computing a filter transfer function based on the pre-emphasized signal, and shaping the noise by filtering the noise through the transfer function to produce a shaped noise signal, wherein the noise shaping comprises producing a noise feedback.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 14, 2011
    Inventors: Bruno Bessette, Jimmy Lapierre, Vladimir Malenovsky, Roch Lefebvre, Redwan Salami
  • Publication number: 20110173010
    Abstract: An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Bruno Bessette, Bernhard Grill
  • Patent number: 7979271
    Abstract: Methods and devices are used for switching between sound signal coding modes and for producing from a decoded target signal, an overlap-add target signal in a current frame coded according to a first mode. On a coder side, switching is at the junction between a previous frame coded according to a first coding mode and a current frame coded according to a second coding mode, a sound signal is filtered through a weighting filter to produce a weighted signal in the current frame, and a windowed zero-input response of the weighting filter is removed from the weighted signal. On a decoder side, a current frame of the target signal is first windowed, a left portion of a resulting window is skipped, and then a windowed zero-input response of the weighting filter is added to the decoded target signal to reconstruct the overlap-add target signal.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: July 12, 2011
    Assignee: Voiceage Corporation
    Inventor: Bruno Bessette
  • Publication number: 20110153333
    Abstract: The present invention relates to methods and devices for forward time-domain aliasing cancellation in a coded signal transmitted from a coder to a decoder. Information related to correction of the time-domain aliasing in the coded signal is calculated at the coder and added in a bitstream sent from the coder to the decoder. The decoder receives the bitstream and cancels the time-domain aliasing in the coded signal in response to the information comprised in the bitstream. The information may be representative of a difference between a frame of audio signal to be encoded in a first coding mode and a decoded signal from the frame including time-domain aliasing effects.
    Type: Application
    Filed: June 23, 2010
    Publication date: June 23, 2011
    Inventor: Bruno Bessette
  • Publication number: 20110145003
    Abstract: A frequency-domain noise shaping method and device interpolates a spectral shape and a time-domain envelope of a quantization noise in a windowed and transform-coded audio signal. In the method and device, transform coefficients of the windowed and transform-coded audio signal are split into a plurality of spectral bands. For each spectral band, a first gain representing a spectral shape of the quantization noise at a first transition between a first time window and a second time window is calculated, a second gain representing a spectral shape of the quantization noise at a second transition between the second time window and a third time window is calculated, and the transform coefficients of the second time window are filtered based on the first and second gains, to interpolate between the first and second transitions the spectral shape and the time-domain envelope of the quantization noise.
    Type: Application
    Filed: October 15, 2010
    Publication date: June 16, 2011
    Applicant: VOICEAGE CORPORATION
    Inventor: Bruno Bessette