Patents by Inventor Bruno Ryrko

Bruno Ryrko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6490923
    Abstract: A micromechanical rotation rate sensor based on the Coriolis principle includes two plate-like oscillators arranged one above the other in two planes for excitation to oscillate by means of an electrostatic drive. Three elements in each case form an oscillator structure. The oscillators are in each case suspended on opposite side edges by at least one web between an associated plate-like support and an associated drive plate element. The two supports and the two drive plate elements are, in each case, arranged one above the other in layers. A fixed plate element is located between the two drive plate elements so that, in each case, an identical narrow drive gap is defined between the drive plate elements. The drive gap is considerably smaller than the distance between the plate-like oscillators.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 10, 2002
    Assignee: LITEF GmbH
    Inventors: Uwe Breng, Martin Hafen, Eberhard Handrich, Bruno Ryrko
  • Patent number: 6374671
    Abstract: For the drive excitation, the method for the capacitive drive excitation of oscillators in sensors for the capacitive measurement of force, acceleration and, in particular, rotation rates according to the Coriolis principle, provides according to the invention for the use of high-frequency constant-amplitude pulse packets with no DC component, the width or phase angle of which can be adjusted in order to keep the oscillator speed constant, for the purpose of resetting or correcting tolerances.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: April 23, 2002
    Assignee: Litef GmbH
    Inventors: Bruno Ryrko, Günter Spahlinger, Walter Gutmann
  • Patent number: 6119517
    Abstract: Strictly out-of-phase stimulation of the two oscillators of a micro-mechanical rate-of-rotation sensor based on the Coriolis principle, having two-plate like oscillators arranged in layers one above another in two parallel planes and capable of being stimulated to oscillate perpendicular to the planes by means of an electrostatic drive, is achieved by the oscillators each being connected via at least one spring to a couple element formed, in each case, in the same wafer layer. The couple elements are mirror-symmetrically configured with respect to a mid-plane between the oscillators and connected to each other by a coupling web arranged therebetween to form a couple structure for the oscillators.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: September 19, 2000
    Assignee: Litef GmbH
    Inventors: Uwe Breng, Bruno Ryrko, Steffen Zimmermann
  • Patent number: 5614742
    Abstract: A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: March 25, 1997
    Assignee: LITEF GmbH
    Inventors: Thomas Gessner, Martin Hafen, Eberhard Handrich, Peter Leinfelder, Bruno Ryrko, Egbert Vetter, Maik Wiemer
  • Patent number: 5504032
    Abstract: A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin semiconductor material oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.
    Type: Grant
    Filed: April 7, 1994
    Date of Patent: April 2, 1996
    Assignee: LITEF GmbH
    Inventors: Thomas Gessner, Martin Hafen, Eberhard Handrich, Peter Leinfelder, Bruno Ryrko, Egbert Vetter, Maik Wiemer
  • Patent number: 4953834
    Abstract: A micromechanical bending spring joint is formed of selectively etched wafer material. The joint includes a pair of leaf springs arranged alongside each other. Each spring is inclined at an oblique angle to the opposed surfaces of the wafer and such springs cross to define a point of intersection. The joint, selectively etched from a single wafer, is characterized by high precision of fulcrum position, bending spring constant and transverse axis rigidity.
    Type: Grant
    Filed: January 20, 1988
    Date of Patent: September 4, 1990
    Assignee: Litef GmbH
    Inventors: Wolfram Ebert, Eberhard Handrich, Martin Hafen, Bruno Ryrko