Patents by Inventor Bruno Thome

Bruno Thome has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170322343
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 9733395
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 15, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 9341953
    Abstract: A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 17, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Layh, Michael Gerhard, Bruno Thome, Wolfgang Singer
  • Publication number: 20140320955
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Publication number: 20140176930
    Abstract: A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Layh, Michael Gerhard, Bruno Thome, Wolfgang Singer
  • Patent number: 8705005
    Abstract: A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: April 22, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Layh, Michael Gerhard, Bruno Thome, Wolfgang Singer
  • Publication number: 20110222043
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Publication number: 20090021715
    Abstract: A microlithographic illumination system can include a light distribution device that can generate a two-dimensional intensity distribution in a first illumination plane. A first raster array of optical raster elements can generates a raster array of secondary light sources. A device with an additional optical effect can be disposed spatially adjacent to the two raster arrays. The device can be configured as an illumination angle variation device. The device can influence the intensity and/or the phase and/or the beam direction of the illumination light. The influence can be such that an intensity contribution of raster elements to the total illumination intensity can vary across the illumination field. This can enable the illumination intensity to be influenced across the illumination field in a defined manner with respect to the total illumination intensity and/or with respect to the intensity contributions from different directions of illumination.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 22, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Markus Deguenther, Michael Layh, Michael Gerhard, Bruno Thome, Wolfgang Singer
  • Publication number: 20080297754
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: February 14, 2008
    Publication date: December 4, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six