Patents by Inventor Bruno Villard

Bruno Villard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230101585
    Abstract: A method of testing non-volatile memory cells formed on a die includes erasing the memory cells and performing a first read operation to determine a lowest read current RC1 for the memory cells and a first number N1 of the memory cells having the lowest read current RC1. A second read operation is performed to determine a second number N2 of the memory cells having a read current not exceeding a target read current RC2. The target read current RC2 is equal to the lowest read current RC1 plus a predetermined current value. The die is determined to be acceptable if the second number N2 is determined to exceed the first number N1 plus a predetermined number. The die is determined to be defective if the second number N2 is determined not to exceed the first number N1 plus the predetermined number.
    Type: Application
    Filed: January 14, 2022
    Publication date: March 30, 2023
    Inventors: Yuri Tkachev, JINHO KIM, CYNTHIA FUNG, GILLES FESTES, BERNARD BERTELLO, PARVIZ GHAZAVI, BRUNO VILLARD, JEAN FRANCOIS THIERY, CATHERINE DECOBERT, SERGUEI JOURBA, FAN LUO, LATT TEE, NHAN DO
  • Patent number: 11362218
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 14, 2022
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Publication number: 20210399127
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Patent number: 11018147
    Abstract: A method of forming a memory device includes forming a floating gate on a memory cell area of a semiconductor substrate, having an upper surface terminating in an edge. An oxide layer is formed having first and second portions extending along the logic and memory cell regions of the substrate surface, respectively, and a third portion extending along the floating gate edge. A non-conformal layer is formed having a first, second and third portions covering the oxide layer first, second and third portions, respectively. An etch removes the non-conformal layer third portion, and thins but does not entirely remove the non-conformal layer first and second portions. An etch reduces the thickness of the oxide layer third portion. After removing the non-conformal layer first and second portions, a control gate is formed on the oxide layer second portion and a logic gate is formed on the oxide layer first portion.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 25, 2021
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Catherine Decobert, Yuri Tkachev, Bruno Villard, Nhan Do
  • Patent number: 8729629
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 20, 2014
    Assignees: Atmel Rousset S.A.S., Laas-CNRS
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron
  • Publication number: 20120267717
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicants: LAAS-CNRS, ATMEL ROUSSET SAS
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron
  • Patent number: 8217452
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: July 10, 2012
    Assignees: Atmel Rousset S.A.S., LAAS-CNRE
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron
  • Publication number: 20120032262
    Abstract: A p-channel LDMOS device with a controlled n-type buried layer (NBL) is disclosed. A Shallow Trench Isolation (STI) oxidation is defined, partially or totally covering the drift region length. The NBL layer, which can be defined with the p-well mask, connects to the n-well diffusion, thus providing an evacuation path for electrons generated by impact ionization. High immunity to the Kirk effect is also achieved, resulting in a significantly improved safe-operating-area (SOA). The addition of the NBL deep inside the drift region supports a space-charge depletion region which increases the RESURF effectiveness, thus improving BV. An optimum NBL implanted dose can be set to ensure fully compensated charge balance among n and p doping in the drift region (charge balance conditions). The p-well implanted dose can be further increased to maintain a charge balance, which leads to an Rdson reduction.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicants: LAAS-CNRS, ATMEL ROUSSET SAS
    Inventors: Willem-Jan Toren, Bruno Villard, Elsa Hugonnard-Bruyere, Gaetan Toulon, Frederic Morancho, Ignasi Cortes Mayol, Thierry Pedron