Patents by Inventor Bryan A. Bloomfield

Bryan A. Bloomfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5650703
    Abstract: An automated guided vehicle (AGV) control system which is downward compatible with existing guidewire systems providing both guidewire navigation and communication and autonomous navigation and guidance and wireless communication between a central controller and each vehicle. FIGS. 90, 91, 92, 93, and 94 provide a map showing relative orientation of the schematic circuits seen in FIGS. 90A-B, 91A-B, 92A-B, 93A-B, and 94A-B, respectively over paths marked by update markers which may be spaced well apart, such as fifty feet. Redundant measurement capability using inputs from linear travel encoders from the vehicle's drive wheels, position measurements from the update markers, and bearing measurements from a novel angular rate sensing apparatus, in combination with the use of a Kalman filter, allows correction for navigation and guidance errors caused by such factors as angular rate sensor drift, wear, temperature changes, aging, and early miscalibration during vehicle operation.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: July 22, 1997
    Assignee: HK Systems, Inc.
    Inventors: James V. Yardley, Gary L. Whatcott, John A. M. Petersen, Bryan A. Bloomfield, Vaughn W. Guest, Rick S. Mottes, Robert K. Forman, L. Bruce Christensen, Joseph Zuercher, Herman P. Schutten
  • Patent number: 5341130
    Abstract: An automated guided vehicle (AGV) control system which is downward compatible with existing guidewire systems providing both guidewire navigation and communication and autonomous navigation and guidance and wireless communication between a central controller and each vehicle. Vehicle steering and control includes autonomous guidance and navigation of the vehicle over paths marked by update markers which may be spaced well apart, such as fifty feet. The control system employs high frequency two-way data transmission and reception capability over the guidewires and via wireless communications. The same data rates and message formats are used in both guidewire and wireless communications systems. Substantially the same communications electronics are used for the central controller and each vehicle. Novel navigation and guidance algorithms are used to select and calculate a non-linear path to each next vehicle waypoint when the vehicle is operating in the autonomous mode.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 23, 1994
    Assignee: Eaton-Kenway, Inc.
    Inventors: James V. Yardley, Gary L. Whatcott, John A. M. Petersen, Bryan A. Bloomfield, Vaughn W. Guest, Rick S. Mottes, Robert K. Forman, L. Bruce Christensen, Joseph Zuercher, Herman P. Schutten
  • Patent number: 5281901
    Abstract: An automated guided vehicle (AGV) control system which is downward compatible with existing guidewire systems providing both guidewire navigation and communication and autonomous navigation and guidance and wireless communication between a central controller and each vehicle. Autonomous vehicle navigation comprises travel over paths marked by update markers which may be spaced well apart, such as fifty feet Redundant measurement capability comprising inputs from linear travel encoders from the vehicle's drive wheels, position measurements from the update markers, and bearing measurements from a novel angular rate sensing apparatus, in combination with the use of a Kalman filter, allows correction for navigation and guidance errors caused by such factors as angular rate sensor drift, wear, temperature changes, aging, and early miscalibration during vehicle operation.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: January 25, 1994
    Assignee: Eaton-Kenway, Inc.
    Inventors: James V. Yardley, Gary L. Whatcott, John A. M. Petersen, Bryan A. Bloomfield, Vaughn W. Guest, Rick S. Mottes, Robert K. Forman, L. Bruce Christensen, Joseph Zuercher, Herman P. Schutten
  • Patent number: 5216605
    Abstract: An improved accuracy position and direction updating system for use with an automatic guided vehicle that navigates by dead reckoning. Permanent magnets providing detectable position indicators are mounted in the floor and may be at widely spaced locations such as fifty feet apart along the route of the vehicle. A row of Hall sensors is transversely mounted on the vehicle. The sensors detect the lateral location of each floor magnet relative to the vehicle as the vehicle passes over the magnet. Sensors are precalibrated, correcting for errors in sensor null voltage readings due to changes in sensor characteristics due to causes comprising aging and temperature. Data from five sensors that are closest to the magnet are correlated with a stored pattern of magnetic field and their position data are averaged to determine a first estimate of the lateral or first dimensional position of the vehicle. A running average is calculated from sequentially acquired estimates to improve the results.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: June 1, 1993
    Assignee: Eaton-Kenway, Inc.
    Inventors: James V. Yardley, Gary L. Whatcott, Bryan A. Bloomfield
  • Patent number: 5191528
    Abstract: An improved accuracy position and direction updating system for use with an automatic guided vehicle that navigates by dead reckoning. Permanent magnets providing detectable position indicators are mounted in the floor and may be at widely spaced locations such as fifty feet apart along the route of the vehicle. A row of Hall sensors is transversely mounted on the vehicle. The sensors detect the lateral location of each floor magnet relative to the vehicle as the vehicle passes over the magnet. Sensors are precalibrated, correcting for errors in sensor null voltage readings due to changes in sensor characteristics due to causes comprising aging and temperature. Data from five sensors that are closest to the magnet are correlated with a stored pattern of magnetic field and their position data are averaged to determined a first estimate of the lateral or first dimensional position of the vehicle. A running average is calculated from sequentially acquired estimates to improve the results.
    Type: Grant
    Filed: October 24, 1990
    Date of Patent: March 2, 1993
    Assignee: Eaton-Kenway, Inc.
    Inventors: James V. Yardley, Gary L. Whatcott, Bryan A. Bloomfield