Patents by Inventor Bryan A. Marcotte

Bryan A. Marcotte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220099582
    Abstract: An embodiment of an analyzer is described that comprises a first conduit configured to channel an annular flow of a first gas; a second conduit positioned within the first conduit, where the outer dimension of the second conduit is separated from an inner dimension of the first conduit by a gap configured to channel an axial flow of a second gas; a reaction chamber fluidically coupled to the first conduit and the second conduit, where the reaction chamber comprises a window on a side opposite from an orifice of the first conduit into the reaction chamber; and a detector positioned adjacent to a side of the window opposite from the reaction chamber, wherein the detector is configured to receive light produced from a reaction of the first gas and the second gas in the reaction chamber.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Inventors: Robert Bailey, Bryan Marcotte, Jeffrey Socha, Nathan Taylor
  • Publication number: 20220057142
    Abstract: An embodiment of a reaction chamber is described that comprises a block of a material comprising a heat source positioned in a central location and a continuous channel comprising an inlet positioned at a first peripheral area of the block and an outlet positioned at a second peripheral area of the block, wherein the channel comprises a serpentine path from the inlet past the centrally located heat source to the outlet.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Robert Bailey, Bryan Marcotte, King Poon, Jeffrey Socha, Mark Rossmeisl
  • Patent number: 8679435
    Abstract: Configurations herein include a novel process and apparatus for generating and maintaining sulfur trioxide gas. The generation system and process operate to provide sulfur trioxide calibration gas for calibrating sulfur trioxide detection devices. The system and process provides a known, concentration of sulfur trioxide gas via a heated catalyst, which enables accurate calibration of measurement equipment. The system functions in part by controlling temperature, amount of moisture, residence time, catalyst selection, diluting generated sulfur trioxide and by locating the sulfur trioxide generator at a point of injection of a sulfur trioxide detection system.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: March 25, 2014
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Yongquan Li, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 8609045
    Abstract: A reaction chamber enables a reaction between received elemental mercury gas and an oxidizing agent gas. The reaction chamber includes a porous (or permeable) medium through which to pass the elemental mercury gas and the oxidizing agent gas. Passing of the elemental mercury gas and the oxidizing agent gas through the porous medium supports a number of useful functions. For example, the porous medium enhances mixing of the elemental mercury gas with the oxidizing agent gas to enhance a reaction. Also, the porous medium increases an amount of surface area in a reaction chamber on which reactions (e.g., heterogeneous surface reactions) can take place between the elemental mercury gas and the oxidizing agent gas to form oxidized mercury gas. Accordingly, the reaction chamber configured to include a porous medium enhances a conversion of elemental mercury gas into oxidized mercury gas.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: December 17, 2013
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Jeffrey Socha, Bryan A. Marcotte
  • Publication number: 20120087856
    Abstract: Configurations herein include a novel process and apparatus for generating and maintaining sulfur trioxide gas. The generation system and process operate to provide sulfur trioxide calibration gas for calibrating sulfur trioxide detection devices. The system and process provides a known, concentration of sulfur trioxide gas via a heated catalyst, which enables accurate calibration of measurement equipment. The system functions in part by controlling temperature, amount of moisture, residence time, catalyst selection, diluting generated sulfur trioxide and by locating the sulfur trioxide generator at a point of injection of a sulfur trioxide detection system.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Inventors: Dieter KITA, Yongquan LI, Jeffrey SOCHA, Bryan A. MARCOTTE
  • Patent number: 8052949
    Abstract: Configurations herein include a novel process and apparatus for generating and maintaining sulfur trioxide gas. The generation system and process operate to provide sulfur trioxide calibration gas for calibrating sulfur trioxide detection devices. The system and process provides a known, concentration of sulfur trioxide gas via a heated catalyst, which enables accurate calibration of measurement equipment. The system functions in part by controlling temperature, amount of moisture, residence time, catalyst selection, diluting generated sulfur trioxide and by locating the sulfur trioxide generator at a point of injection of a sulfur trioxide detection system.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 8, 2011
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Yongquan Li, Jeffrey Socha, Bryan A. Marcotte
  • Publication number: 20100284899
    Abstract: Configurations herein include a novel process and apparatus for generating and maintaining sulfur trioxide gas. The generation system and process operate to provide sulfur trioxide calibration gas for calibrating sulfur trioxide detection devices. The system and process provides a known, concentration of sulfur trioxide gas via a heated catalyst, which enables accurate calibration of measurement equipment. The system functions in part by controlling temperature, amount of moisture, residence time, catalyst selection, diluting generated sulfur trioxide and by locating the sulfur trioxide generator at a point of injection of a sulfur trioxide detection system.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 11, 2010
    Inventors: Dieter Kita, Yongquan Li, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 7736602
    Abstract: A reaction chamber enables a reaction between received elemental mercury gas and an oxidizing agent gas. The reaction chamber includes a porous (or permeable) medium through which to pass the elemental mercury gas and the oxidizing agent gas. Passing of the elemental mercury gas and the oxidizing agent gas through the porous medium supports a number of useful functions. For example, the porous medium enhances mixing of the elemental mercury gas with the oxidizing agent gas to enhance a reaction. Also, the porous medium increases an amount of surface area in a reaction chamber on which reactions (e.g., heterogeneous surface reactions) can take place between the elemental mercury gas and the oxidizing agent gas to form oxidized mercury gas. Accordingly, the reaction chamber configured to include a porous medium enhances a conversion of elemental mercury gas into oxidized mercury gas.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: June 15, 2010
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 7454945
    Abstract: A calibration assembly generates elemental mercury and oxidized mercury for calibrating components of a mercury monitoring system, including making necessary adjustments to efficiencies of a mercury compound converter and an elemental mercury detector. The calibrator generates an elemental mercury sample having a known elemental mercury concentration, [Hg0]1 and combines an oxidizing component with the elemental mercury sample, thereby producing a reduced concentration of elemental mercury [Hg0]2 within the sample. The calibrator measures the concentration of elemental mercury [Hg0]2 within the sample and calculates a difference between the known elemental mercury concentration, [Hg0]1 and the reduced concentration [Hg0]2. The difference between [Hg0]1 and [Hg0]2 is substantially equal to the concentration of oxidized mercury produced by the calibrator.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 25, 2008
    Assignee: Thermo Electron, Inc.
    Inventors: Dieter Kita, James H. Grassi, Jeffrey Socha, Bryan A. Marcotte