Patents by Inventor Bryan A. Patel

Bryan A. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10322991
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 18, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10287230
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 14, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Joshua W. Allen, Jarid M. Metz, Victor DeFlorio, Jihad M. Dakka, Bryan A. Patel, Michael Salciccioli, Michael W. Weber, Stephen Zushma
  • Patent number: 10214486
    Abstract: Disclosed are processes and systems for oxidizing cycloalkylbenzene such as cyclohexylbenzene to make an oxygenate such as a hydroperoxide thereof. A liquid distributor having multiple liquid ingress ports is used for supplying a cycloalkylbenzene-containing liquid into an oxidation reactor in the form of liquid streams forming part of the reaction medium. A gas distributor distributing an O2-containing gas into the reaction medium in the form of gas streams is preferably located below the liquid distributor. Preferably the gas bubbles upwards in the reaction medium. The agitation and mixing provided by the liquid streams, gas streams/bubbles result in sufficient homogeneity of cycloalkylbenzene concentration, cycloalkylbenzene hydroperoxide concentration, dissolved oxygen concentration, and temperature in the liquid phase.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: February 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yesim Igci, Bryan A. Patel, Min Chang
  • Patent number: 10208260
    Abstract: Systems and methods are provided for catalytically dewaxing a diesel boiling range feed. In some aspects, catalytic dewaxing can be performed at low hydrogen treat gas rates and/or low hydrogen purity conditions. In other aspects, the systems and methods can allow for distillate dewaxing while reducing or minimizing the amount of equipment required.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 19, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart S. Shih, Timothy L. Hilbert, Anastasios I. Skoulidas, Bryan A. Patel, Michael R. Chuba, Sean C. Smyth, Mohan Kalyanaraman
  • Publication number: 20190016969
    Abstract: A multi-stage process for upgrading tars is provided. A predominantly hydrotreating stage can be applied before a cracking stage, which can be a hydrocracking or a thermal cracking stage. Alternatively, a predominantly cracking stage, which can be a hydrocracking or a thermal cracking stage, can be applied before a hydrotreating stage. Apparatus suitable for performing the method is also provided.
    Type: Application
    Filed: July 2, 2018
    Publication date: January 17, 2019
    Inventors: Kapil Kandel, Bryan A. Patel, Sumathy Raman, John S. Coleman, Reyyan Koc-Karabocek, Teng Xu, Cyrus J. Rachal, Subramanya V. Nayak
  • Patent number: 10105668
    Abstract: Systems, methods, and apparatus for distribution of oxygen-containing gas within a gas-liquid oxidation reaction are provided herein. The invention is particularly suited for oxidation of liquid-phase organic reactants with oxidizing gas, such as the oxidation of cyclohexylbenzene to cyclohexylbenzene hydroperoxide using an oxygen-containing gas. The oxygen-containing gas is distributed through a gas distributor and into a liquid-phase reaction medium within an oxidation reactor. In some aspects, this achieves a high degree of uniformity of oxygen concentration within the liquid-phase reaction medium. The gas distributor is disposed within a lower portion of the reactor, and may comprise a network of conduits in fluid communication with each other, which are arranged within a plane that is substantially parallel to a bottom surface of the reactor.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 23, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yesim Igci, Bryan A. Patel, Min Chang
  • Publication number: 20180179141
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl(s) to form methyl-1,1?-biphenyl mono-carboxylic acid(s), which can be esterified to form plasticizers, comprising contacting a solution of dimethyl-1,1?-biphenyl(s) in acetic acid in the presence of an oxidation catalyst and air under time and temperature conditions sufficient to oxidize the dimethyl-1,1?-biphenyl(s) into one or more methyl-1,1?-biphenyl mono-carboxylic acid(s) products, conducting at least one of (i) adding an antisolvent, or (ii) optimizing a total conversion of dimethyl-1,1?-biphenyl(s) by oxidation based upon a molar ratio of dimethyl-1,1?-biphenyl isomers, or (iii) precipitating the methyl-1,1?-biphenyl mono-carboxylic acid(s) products by lowering the temperature, or (iv) decreasing the oxidation reaction temperature to enhance conversion of aldehydes over methyl functional groups, so as to limit over-oxidation of the dimethyl-1,1?-biphenyl(s), wherein the oxidation reaction is conducted in the absence of bromide-containing cata
    Type: Application
    Filed: December 1, 2017
    Publication date: June 28, 2018
    Inventors: Michael P. LANCI, Joshua W. ALLEN, Jarid M. METZ, Victor DeFLORIO, Jihad M. DAKKA, Bryan A. PATEL, Michael SALCICCIOLI, Michael W. WEBER, Stephen ZUSHMA
  • Publication number: 20180179138
    Abstract: A process for selective oxidation of dimethyl-1,1?-biphenyl to form methyl-1,1?-biphenyl mono-carboxylic acid(s), comprising contacting a solution of dimethyl-1,1?-biphenyl in acetic acid solvent in the presence of a Co(II) acetate catalyst and air, and optionally adding a co-solvent, or adding sodium or potassium acetate, and oxidizing the dimethyl-1,1?-biphenyl under time and temperature conditions sufficient to form one or more methyl-1,1?-biphenyl mono-carboxylic acid(s). The mono-carboxylic acids are advantageously isolated and esterified to form biphenyl mono-esters for use as plasticizers.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 28, 2018
    Inventors: Michael P. LANCI, Joshua W. ALLEN, Jarid M. METZ, Victor DeFLORIO, Jihad M. DAKKA, Bryan A. PATEL, Michael SALCICCIOLI, Michael W. WEBER, Stephen ZUSHMA
  • Publication number: 20180148406
    Abstract: Disclosed are processes and systems for oxidizing cycloalkylbenzene such as cyclohexylbenzene to make an oxygenate such as a hydroperoxide thereof. A liquid distributor having multiple liquid ingress ports is used for supplying a cycloalkylbenzene-containing liquid into an oxidation reactor in the form of liquid streams forming part of the reaction medium. A gas distributor distributing an O2-containing gas into the reaction medium in the form of gas streams is preferably located below the liquid distributor. Preferably the gas bubbles upwards in the reaction medium. The agitation and mixing provided by the liquid streams, gas streams/bubbles result in sufficient homogeneity of cycloalkylbenzene concentration, cycloalkylbenzene hydroperoxide concentration, dissolved oxygen concentration, and temperature in the liquid phase.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 31, 2018
    Inventors: Yesim Igci, Bryan A. Patel, Min Chang
  • Publication number: 20180141018
    Abstract: Systems, methods, and apparatus for distribution of oxygen-containing gas within a gas-liquid oxidation reaction are provided herein. The invention is particularly suited for oxidation of liquid-phase organic reactants with oxidizing gas, such as the oxidation of cyclohexylbenzene to cyclohexylbenzene hydroperoxide using an oxygen-containing gas. The oxygen-containing gas is distributed through a gas distributor and into a liquid-phase reaction medium within an oxidation reactor. In some aspects, this achieves a high degree of uniformity of oxygen concentration within the liquid-phase reaction medium. The gas distributor is disposed within a lower portion of the reactor, and may comprise a network of conduits in fluid communication with each other, which are arranged within a plane that is substantially parallel to a bottom surface of the reactor.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 24, 2018
    Inventors: Yesim Igci, Bryan A. Patel, Min Chang
  • Publication number: 20180002615
    Abstract: Systems and methods are provided for catalytically dewaxing a diesel boiling range feed. In some aspects, catalytic dewaxing can be performed at low hydrogen treat gas rates and/or low hydrogen purity conditions. In other aspects, the systems and methods can allow for distillate dewaxing while reducing or minimizing the amount of equipment required.
    Type: Application
    Filed: May 30, 2017
    Publication date: January 4, 2018
    Inventors: Stuart S. SHIH, Timothy L. HILBERT, Anastasios I. SKOULIDAS, Bryan A. PATEL, Michael R. CHUBA, Sean C. SMYTH, Mohan KALYANARAMAN
  • Patent number: 9546121
    Abstract: A process for making phenol and/or cyclohexanone comprises: (A) oxidizing a cyclohexylbenzene feed to obtain an oxidation product comprising cyclohexylbenzene, cyclohexyl-1-phenyl-1-hydroperoxide and phenol; (B) separating at least a portion of the oxidation product to obtain a first fraction comprising cyclohexyl-1-phenyl-1-hydroperoxide and a second fraction comprising cyclohexylbenzene and phenol; (C) removing at least a portion of the phenol from at least a portion of the second fraction to obtain a third fraction; (D) recycling at least a portion of the cyclohexylbenzene in the third fraction to the oxidizing step (A); and (E) contacting at least a portion of the cyclohexyl-1-phenyl-1-hydroperoxide in the first fraction with an acid catalyst in a cleavage reactor under cleavage conditions to obtain a cleavage product comprising phenol and cyclohexanone.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 17, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bryan A. Patel, Jihad M. Dakka
  • Patent number: 9464047
    Abstract: Method for concentrating an organic hydroperoxide mixture comprising a hydrocarbon and a hydroperoxide corresponding thereto comprises evaporating a first liquid mixture in a thin-film evaporation device followed by separation in a separation zone. Both the evaporation device and the separation zone operate at a low absolute pressure at a temperature lower than the thermal degradation temperature of the hydroperoxide to prevent thermal decomposition thereof. The process is particularly useful for concentrating an oxidation product made from the oxidation of cyclohexylbenzene.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: October 11, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jason D. Davis, Christopher L. Becker, Travis A. Reine, Bryan A. Patel
  • Publication number: 20160264501
    Abstract: A process for making phenol and/or cyclohexanone comprises: (A) oxidizing a cyclohexylbenzene feed to obtain an oxidation product comprising cyclohexylbenzene, cyclohexyl-1-phenyl-1-hydroperoxide and phenol; (B) separating at least a portion of the oxidation product to obtain a first fraction comprising cyclohexyl-1-phenyl-1-hydroperoxide and a second fraction comprising cyclohexylbenzene and phenol; (C) removing at least a portion of the phenol from at least a portion of the second fraction to obtain a third fraction; (D) recycling at least a portion of the cyclohexylbenzene in the third fraction to the oxidizing step (A); and (E) contacting at least a portion of the cyclohexyl-1-phenyl-1-hydroperoxide in the first fraction with an acid catalyst in a cleavage reactor under cleavage conditions to obtain a cleavage product comprising phenol and cyclohexanone.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 15, 2016
    Inventors: Bryan A. PATEL, Jihad M. DAKKA
  • Patent number: 9409841
    Abstract: A process for producing phenol and/or cyclohexanone by cleaving cyclohexylbenzene hydroperoxide in a loop cleavage reactor comprising multiple reaction zones connected in series. In desirable embodiments, fresh cyclohexylbenzene hydroperoxide feed(s) are supplied to reaction zones the final reaction zone, and fresh acid catalyst is supplied only to the final reaction zone. In desirable embodiments, a portion of the effluent exiting the final reaction zone is recycled to the first reaction zone. Each reaction zone is equipped with a heat exchanger downstream of the feed port to extract heat generated from the cleavage reaction.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: August 9, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jason D. Davis, Christopher L. Becker, Bryan A. Patel, John S. Coleman, Hari Nair
  • Patent number: 9382178
    Abstract: In a process for producing phenol and cyclohexanone, reaction components comprising cyclohexylbenzene hydroperoxide and an acid catalyst are supplied to a cleavage reaction zone, mixed under mixing conditions effective to combine the reaction components into a reaction mixture and at least part of the cyclohexylbenzene hydroperoxide in the reaction mixture is converted under cleavage conditions to into phenol and cyclohexanone; and a cleavage effluent is recovered from the cleavage reaction zone. The cleavage and mixing conditions are controlled such that the ratio tR/tM is at least 10, where tR is the half-life of cyclohexylbenzene hydroperoxide under the cleavage conditions and tM is the time required after injection of a tracer material into the reaction mixture under the mixing conditions for at least 95% by volume of the entire reaction mixture to attain at least 95% of the volume-averaged tracer material concentration.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: July 5, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bryan A. Patel, John S. Coleman
  • Publication number: 20160122298
    Abstract: Method for concentrating an organic hydroperoxide mixture comprising a hydrocarbon and a hydroperoxide corresponding thereto comprises evaporating a first liquid mixture in a thin-film evaporation device followed by separation in a separation zone. Both the evaporation device and the separation zone operate at a low absolute pressure at a temperature lower than the thermal degradation temperature of the hydroperoxide to prevent thermal decomposition thereof. The process is particularly useful for concentrating an oxidation product made from the oxidation of cyclohexylbenzene.
    Type: Application
    Filed: June 6, 2014
    Publication date: May 5, 2016
    Inventors: Jason D. Davis, Christopher L. Becker, Travis A. Reine, Bryan A. Patel
  • Publication number: 20160075623
    Abstract: In a process for producing phenol and cyclohexanone, reaction components comprising cyclohexylbenzene hydroperoxide and an acid catalyst are supplied to a cleavage reaction zone, mixed under mixing conditions effective to combine the reaction components into a reaction mixture and at least part of the cyclohexylbenzene hydroperoxide in the reaction mixture is converted under cleavage conditions to into phenol and cyclohexanone; and a cleavage effluent is recovered from the cleavage reaction zone. The cleavage and mixing conditions are controlled such that the ratio tR/tM is at least 10, where tR is the half-life of cyclohexylbenzene hydroperoxide under the cleavage conditions and tM is the time required after injection of a tracer material into the reaction mixture under the mixing conditions for at least 95% by volume of the entire reaction mixture to attain at least 95% of the volume-averaged tracer material concentration.
    Type: Application
    Filed: April 9, 2014
    Publication date: March 17, 2016
    Inventors: Bryan A. Patel, John S. Coleman
  • Publication number: 20160046550
    Abstract: A process for producing phenol and/or cyclohexanone by cleaving cyclohexylbenzene hydroperoxide in a loop cleavage reactor comprising multiple reaction zones connected in series. In desirable embodiments, fresh cyclohexylbenzene hydroperoxide feed(s) are supplied to reaction zones the final reaction zone, and fresh acid catalyst is supplied only to the final reaction zone. In desirable embodiments, a portion of the effluent exiting the final reaction zone is recycled to the first reaction zone. Each reaction zone is equipped with a heat exchanger downstream of the feed port to extract heat generated from the cleavage reaction.
    Type: Application
    Filed: March 24, 2014
    Publication date: February 18, 2016
    Inventors: Jason D. Davis, Christopher L. Becker, Bryan A. Patel, John S. Coleman, Hari Nair
  • Patent number: 9238605
    Abstract: A process for oxidizing a first hydrocarbon to a corresponding first oxygenate by feeding a first feedstock comprising the first hydrocarbon into an oxidation reactor, contacting the reaction medium with a gas stream comprising O2 in the oxidation reactor, and supplying a hydroperoxide additive to the oxidation reactor. By including the hydroperoxide additive in the reaction medium, foaming at and/or close to the beginning of the oxidation reaction can be significantly reduced.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: January 19, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bryan A. Patel, Travis A. Reine