Patents by Inventor Bryan Alan Davis

Bryan Alan Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947000
    Abstract: Systems, methods, and computer-readable media are described for compact radar systems. In some examples, a compact radar system can include a first set of transmit antennas, a second set of receive antennas, one or more processors, and at least one computer-readable storage medium storing computer-executable instructions which, when executed by the one or more processors, cause the radar system to coordinate digital beam steering of the first set of transmit antennas and the second set of receive antennas, and coordinate digital beam forming with one or more of the second set of receive antennas to detect one or more objects within a distance of the radar system.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: April 2, 2024
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Adam Eugene Robertson, Jon Erik Knabenschuh, Lyman Davies Horne, Tyler Drue Park, Matthew Robertson Morin, James David Mackie, Matthew Elliott Argyle, Bryan Alan Davis, Chester Parker Ferry, Daniel Glen Bezzant, Justin Craig Huntington, Nathan James Packard
  • Patent number: 11906657
    Abstract: A method and system device provides a unique object identification process by obtaining information from one or more of radar signals, infrared signals, optical signals, audio signals, and other signals. The method includes continuously receiving object data at the device, applying by a machine learning system, a set of parameters to process the object identification and confidence level, and outputting or updating the object identification, confidence level, and actionable recommendations. The radar data includes a Doppler signature having a wrapped signal due to a sampling rate of the radar system. The Doppler signature is used to train the machine learning system to identify drone types.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 20, 2024
    Assignee: Fortem Technologies, Inc.
    Inventors: David Preece, Mikko Valimaki, Mitchell Kay Oldroyd, Adam Eugene Robertson, Bryan Alan Davis, Matthew Elliott Argyle, David Thimm, James David Mackie
  • Patent number: 11658725
    Abstract: A system having an array of antennas with particular weights for signals associated with different groups of antennas. The array of antennas includes a first group of antennas positioned in a middle portion of the array of antennas, a second group of antennas positions at one or more edges of the array of antennas, and a third group of antennas positioned at one or more corners of the array of antennas. The system includes a control module configured to control each respective and tenant in the array of antennas. The control module can further be configured to weight the first group of antennas a first weighting amount, to weight the second group of antennas a second weighting amount and to weight the third group of antennas a third weighting amount. The weighting improves the system's ability to reduce ambiguities in an angle of arrival associated with the object.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: May 23, 2023
    Assignee: Fortem Technologies, Inc.
    Inventors: Bryan Alan Davis, Matthew Robertson Morin, Nathan James Packard
  • Publication number: 20230137080
    Abstract: Systems, methods, and computer-readable media are described for combining digital and analog beamsteering in a channelized antenna array. In some examples, a method can include receiving one or more signals at each of a plurality of groups of antenna elements, each group of antenna elements defining a respective channel from a plurality of channels, and steering, by each respective channel and using analog steering, the one or more signals in a respective direction to yield a steered analog signal pattern. The method can further include converting the steered analog signal pattern associated with each respective channel into a respective digital signal and, based on the respective digital signal, generating, using digital steering, digital signal patterns steered within the steered analog signal pattern associated with the respective digital signal.
    Type: Application
    Filed: December 12, 2022
    Publication date: May 4, 2023
    Inventors: Matthew Robertson MORIN, Brandon Robert HICKS, James David MACKIE, Bryan Alan DAVIS
  • Patent number: 11527825
    Abstract: Systems, methods, and computer-readable media are described for combining digital and analog beamsteering in a channelized antenna array. In some examples, a method can include receiving one or more signals at each of a plurality of groups of antenna elements, each group of antenna elements defining a respective channel from a plurality of channels, and steering, by each respective channel and using analog steering, the one or more signals in a respective direction to yield a steered analog signal pattern. The method can further include converting the steered analog signal pattern associated with each respective channel into a respective digital signal and, based on the respective digital signal, generating, using digital steering, digital signal patterns steered within the steered analog signal pattern associated with the respective digital signal.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: December 13, 2022
    Assignee: Fortem Technologies, Inc.
    Inventors: Matthew Robertson Morin, Brandon Robert Hicks, James David MacKie, Bryan Alan Davis
  • Publication number: 20220317282
    Abstract: Systems, methods, and computer-readable media are described for compact radar systems. In some examples, a compact radar system can include a first set of transmit antennas, a second set of receive antennas, one or more processors, and at least one computer-readable storage medium storing computer-executable instructions which, when executed by the one or more processors, cause the radar system to coordinate digital beam steering of the first set of transmit antennas and the second set of receive antennas, and coordinate digital beam forming with one or more of the second set of receive antennas to detect one or more objects within a distance of the radar system.
    Type: Application
    Filed: June 6, 2022
    Publication date: October 6, 2022
    Inventors: Adam Eugene ROBERTSON, Jon Erik Knabenschuh, Lyman Davies HORNE, Tyler Drue PARK, Matthew Robertson MORIN, James David MACKIE, Matthew Elliott ARGYLE, Bryan Alan DAVIS, Chester Parker FERRY, Daniel Glen BEZZANT, Justin Craig HUNTINGTON, Nathan James PACKARD
  • Patent number: 11353575
    Abstract: Systems, methods, and computer-readable media are described for compact radar systems. In some examples, a compact radar system can include a first set of transmit antennas, a second set of receive antennas, one or more processors, and at least one computer-readable storage medium storing computer-executable instructions which, when executed by the one or more processors, cause the radar system to coordinate digital beam steering of the first set of transmit antennas and the second set of receive antennas, and coordinate digital beam forming with one or more of the second set of receive antennas to detect one or more objects within a distance of the radar system.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: June 7, 2022
    Assignee: Fortem Technologies, Inc.
    Inventors: Adam Eugene Robertson, Jon Erik Knabenschuh, Lyman Davies Horne, Tyler Drue Park, Matthew Robertson Morin, James David Mackie, Matthew Elliott Argyle, Bryan Alan Davis, Chester Parker Ferry, Daniel Glen Bezzant, Justin Craig Huntington, Nathan James Packard
  • Publication number: 20210367658
    Abstract: A system having an array of antennas with particular weights for signals associated with different groups of antennas. The array of antennas includes a first group of antennas positioned in a middle portion of the array of antennas, a second group of antennas positions at one or more edges of the array of antennas, and a third group of antennas positioned at one or more corners of the array of antennas. The system includes a control module configured to control each respective and tenant in the array of antennas. The control module can further be configured to weight the first group of antennas a first weighting amount, to weight the second group of antennas a second weighting amount and to weight the third group of antennas a third weighting amount. The weighting improves the system's ability to reduce ambiguities in an angle of arrival associated with the object.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Bryan Alan DAVIS, Matthew Robertson MORIN, Nathan James PACKARD
  • Patent number: 11125873
    Abstract: Systems, methods, and computer-readable media are described using radar systems to avoid vehicle collisions. An example radar system can include antennas mounted on an aircraft, where each antenna has a different orientation facing a different direction away from the aircraft. The radar system can include one or more processing devices and a computer-readable storage medium storing instructions which, when executed by the one or more processing devices, cause the radar system to coordinate digital beam steering and digital beam forming with the antennas to produce a radar coverage area that includes a portion of an airspace around the aircraft; detect, based a signal transmitted by the antennas using the digital beam steering and digital beam forming, an object within the radar coverage area; and generate collision avoidance information including an indication of the object detected within the radar coverage area and/or an instruction for avoiding a collision with the object.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: September 21, 2021
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Adam Eugene Robertson, Matthew Robertson Morin, Bryan Alan Davis, Bruce Alexander Carpenter, Matthew Elliott Argyle, James David Mackie, Eric Richard Grover, Brandon Robert Hicks, David Preece, Mikko Valimaki
  • Patent number: 11088753
    Abstract: A system having an array of antennas with particular weights for signals associated with different groups of antennas. The array of antennas includes a first group of antennas positioned in a middle portion of the array of antennas, a second group of antennas positions at one or more edges of the array of antennas, and a third group of antennas positioned at one or more corners of the array of antennas. The system includes a control module configured to control each respective and tenant in the array of antennas. The control module can further be configured to weight the first group of antennas a first weighting amount, to weight the second group of antennas a second weighting amount and to weight the third group of antennas a third weighting amount. The weighting improves the system's ability to reduce ambiguities in an angle of arrival associated with the object.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 10, 2021
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Bryan Alan Davis, Matthew Robertson Morin, Nathan James Packard
  • Publication number: 20210028542
    Abstract: Systems, methods, and computer-readable media are described for combining digital and analog beamsteering in a channelized antenna array. In some examples, a method can include receiving one or more signals at each of a plurality of groups of antenna elements, each group of antenna elements defining a respective channel from a plurality of channels, and steering, by each respective channel and using analog steering, the one or more signals in a respective direction to yield a steered analog signal pattern. The method can further include converting the steered analog signal pattern associated with each respective channel into a respective digital signal and, based on the respective digital signal, generating, using digital steering, digital signal patterns steered within the steered analog signal pattern associated with the respective digital signal.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 28, 2021
    Inventors: Matthew Robertson MORIN, Brandon Robert HICKS, James David MACKIE, Bryan Alan DAVIS
  • Publication number: 20200106511
    Abstract: A system having an array of antennas with particular weights for signals associated with different groups of antennas. The array of antennas includes a first group of antennas positioned in a middle portion of the array of antennas, a second group of antennas positions at one or more edges of the array of antennas, and a third group of antennas positioned at one or more corners of the array of antennas. The system includes a control module configured to control each respective and tenant in the array of antennas. The control module can further be configured to weight the first group of antennas a first weighting amount, to weight the second group of antennas a second weighting amount and to weight the third group of antennas a third weighting amount. The weighting improves the system's ability to reduce ambiguities in an angle of arrival associated with the object.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 2, 2020
    Inventors: Bryan Alan DAVIS, Matthew Robertson MORIN, Nathan James PACKARD
  • Publication number: 20200103499
    Abstract: A method and system device provides a unique object identification process by obtaining information from one or more of radar signals, infrared signals, optical signals, audio signals, and other signals. The method includes continuously receiving object data at the device, applying by a machine learning system, a set of parameters to process the object identification and confidence level, and outputting or updating the object identification, confidence level, and actionable recommendations. The radar data includes a Doppler signature having a wrapped signal due to a sampling rate of the radar system. The Doppler signature is used to train the machine learning system to identify drone types.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 2, 2020
    Inventors: David Preece, Mikko Valimaki, Mitchell Kay Oldroyd, Adam Eugene Robertson, Bryan Alan Davis, Matthew Elliott Argyle, David Thimm, James David Mackie