Patents by Inventor Bryan Clark

Bryan Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250017454
    Abstract: A medical device may comprise a distal tip having a viewing element, a lighting element, and at least one feature configured to removably couple the distal tip to a shaft. The medical device may also comprise a working channel coupled to the distal tip and defining a central lumen configured to receive a tool. A wall of the working channel may define at least one additional lumen. The working channel may be configured to be removably inserted into the shaft. The medical device may also comprise at least one of a wire, a cable, or a conduit passing through the at least one additional lumen.
    Type: Application
    Filed: October 1, 2024
    Publication date: January 16, 2025
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Richard CRAWFORD, Martin FAWDRY, Ben McNICHOLL, Aiden FLANAGAN, Elizabeth ALBRECHT, Leili SALEHI, Anne GU, Bryan CLARK, Megan CHROBAK
  • Patent number: 12133633
    Abstract: A medical device may comprise a distal tip having a viewing element, a lighting element, and at least one feature configured to removably couple the distal tip to a shaft. The medical device may also comprise a working channel coupled to the distal tip and defining a central lumen configured to receive a tool. A wall of the working channel may define at least one additional lumen. The working channel may be configured to be removably inserted into the shaft. The medical device may also comprise at least one of a wire, a cable, or a conduit passing through the at least one additional lumen.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: November 5, 2024
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Richard Crawford, Martin Fawdry, Ben McNicholl, Aiden Flanagan, Elizabeth Albrecht, Leili Salehi, Anne Gu, Bryan Clark, Megan Chrobak
  • Publication number: 20240190718
    Abstract: Molybdenum precursors with high purity and methods for purifying molybdenum precursors are provided. A method comprises obtaining a first vessel comprising a solid reagent; vaporizing at least a portion of the solid reagent to produce a vapor comprising a MoCl5 vapor and a molybdenum impurity vapor; flowing at least a portion of the MoCl5 vapor and at least a portion of the molybdenum impurity vapor to a second vessel; condensing at least a portion of the MoCl5 vapor in the second vessel to separate the MoCl5 from the molybdenum impurity; and removing at least a portion of the molybdenum impurity vapor from the second vessel to obtain a MoCl5 precursor.
    Type: Application
    Filed: December 8, 2023
    Publication date: June 13, 2024
    Inventors: Loren Press, Michael Watson, Benjamin R. Garrett, Bryan Clark Hendrix, Cristian Ocampo, Juan Valdez, Robert L. Wright, JR.
  • Publication number: 20240170290
    Abstract: Methods for selective deposition of precursor materials and related devices are provided. The methods comprise obtaining a structure. The structure comprises a non-dielectric material, and a dielectric material. The methods comprise contacting the structure with a molybdenum precursor under conditions, so as to obtain a molybdenum material on at least a portion of the non-dielectric material. The molybdenum material is not deposited on the dielectric material under the conditions.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 23, 2024
    Inventors: Philip S. H. Chen, Shawn Duc Nguyen, Bryan Clark Hendrix
  • Publication number: 20240032772
    Abstract: A medical system that includes a medical device having an imaging device configured to capture images of a target site. A location of the target site is determined based on the images. The medical device includes a light source configured to direct light onto the location of the target site, and a processor and non-transitory computer readable medium storing instructions that, when executed by the processor, causes the processor to move a sensor of a medical instrument toward the location of the target site based on the sensor detecting the light at the target site.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Aiden FLANAGAN, Bryan CLARK
  • Patent number: 11812926
    Abstract: A medical system that includes a medical device having an imaging device configured to capture images of a target site. A location of the target site is determined based on the images. The medical device includes a light source configured to direct light onto the location of the target site, and a processor and non-transitory computer readable medium storing instructions that, when executed by the processor, causes the processor to move a sensor of a medical instrument toward the location of the target site based on the sensor detecting the light at the target site.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: November 14, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Aiden Flanagan, Bryan Clark
  • Publication number: 20230245894
    Abstract: Provided is a process comprising a selective ruthenium seed layer deposition with oxygen-free ruthenium precursors, followed by bulk deposition of metal-containing precursors such as tungsten, molybdenum, cobalt, ruthenium, and/or copper-containing precursors. The ruthenium seed layer deposition is highly selective for the conducting portions of the microelectronic device substrate while minimizing deposition onto the insulating surfaces of the microelectronic device substrate. In certain embodiments, the conducting portions of the substrate is chosen from titanium nitride, tungsten nitride, tantalum nitride, tungsten, cobalt, molybdenum, aluminum, and copper.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Philip S.H. Chen, Bryan Clark Hendrix, Thomas M. Cameron
  • Publication number: 20230187202
    Abstract: The use of selective deposition of silicon nitride can eliminate conventional patterning steps by allowing silicon nitride to be deposited only in selected and desired areas. Using a silicon iodide precursor alternately with a thermal nitrogen source in an ALD or pulsed CVD mode, silicon nitride can be deposited preferentially on a surface such as silicon nitride, silicon dioxide, germanium oxide, SiCO, SiOF, silicon carbide, silicon oxynitride, and low k substrates, while exhibiting very little deposition on exposed surfaces such as titanium nitride, tantalum nitride, aluminum nitride, hafnium oxide, zirconium oxide, aluminum oxide, titanium oxide, tantalum oxide, niobium oxide, lanthanum oxide, yttrium oxide, magnesium oxide, calcium oxide, and strontium oxide.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 15, 2023
    Inventors: Han Wang, Bryan Clark Hendrix, Eric Condo
  • Publication number: 20210315446
    Abstract: A medical device may comprise a distal tip having a viewing element, a lighting element, and at least one feature configured to removably couple the distal tip to a shaft. The medical device may also comprise a working channel coupled to the distal tip and defining a central lumen configured to receive a tool. A wall of the working channel may define at least one additional lumen. The working channel may be configured to be removably inserted into the shaft. The medical device may also comprise at least one of a wire, a cable, or a conduit passing through the at least one additional lumen.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 14, 2021
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Richard CRAWFORD, Martin FAWDRY, Ben McNICHOLL, Aiden FLANAGAN, Elizabeth ALBRECHT, Leili SALEHI, Anne GU, Bryan CLARK, Megan CHROBAK
  • Publication number: 20210161361
    Abstract: A medical system that includes a medical device having an imaging device configured to capture images of a target site. A location of the target site is determined based on the images. The medical device includes a light source configured to direct light onto the location of the target site, and a processor and non-transitory computer readable medium storing instructions that, when executed by the processor, causes the processor to move a sensor of a medical instrument toward the location of the target site based on the sensor detecting the light at the target site.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 3, 2021
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Aiden FLANAGAN, Bryan CLARK
  • Patent number: 10872770
    Abstract: The present disclosure relates to a bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors, and ultra high purity versions thereof, methods of making, and methods of using these bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors in a vapor deposition process. One aspect of the disclosure relates to an ultrahigh purity bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursor of the formula Co2(CO)6(R3C?CR4), where R3 and R4 are different organic moieties and R4 is more electronegative or more electron withdrawing compared to R3.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 22, 2020
    Assignee: Entegris, Inc.
    Inventors: Sangbum Han, Seobong Chang, Jaeeon Park, Bryan Clark Hendrix, Thomas H. Baum
  • Patent number: 10827939
    Abstract: The present disclosure relates to the field of tissue mapping and ablation. Specifically, the present disclosure relates to expandable medical devices for identifying and treating local anatomical abnormalities within a body lumen. More specifically, the present disclosure relates to systems and methods of focal treatment for overactive bladders.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: November 10, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Sandra Nagale, Bryan Clark, Allan Shuros, Ding He, Dennis Werner, Lynne Swanson, Charles Gibson, Amedeo Chiavetta, Michael Peterson, Shibaji Shome, Mark Boden, Timothy Harrah
  • Patent number: 10453744
    Abstract: The disclosure relates to a method of making molybdenum films utilizing boron and molybdenum nucleation layers. The resulting molybdenum films have low electrical resistivity, are substantially free of boron, and can be made at reduced temperatures compared to conventional chemical vapor deposition processes that do not use the boron or molybdenum nucleation layers. The molybdenum nucleation layer formed by this process can protect the substrate from the etching effect of MoCl5 or MoOCl4, facilitates nucleation of subsequent CVD Mo growth on top of the molybdenum nucleation layer, and enables Mo CVD deposition at lower temperatures. The nucleation layer can also be used to control the grain sizes of the subsequent CVD Mo growth, and therefore controls the electrical resistivity of the Mo film.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: October 22, 2019
    Assignee: ENTEGRIS, INC.
    Inventors: Shuang Meng, Richard Ulrich Assion, Thomas H. Baum, Bryan Clark Hendrix
  • Patent number: 10441785
    Abstract: Systems and methods for the treatment of bladder conditions using direct electrical pacing are provided. The systems and methods generally apply high-frequency pacing stimuli directly to the bladder wall, from one or more of the inner and outer bladder surfaces.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Timothy Harrah, Ding He, Sandra Nagale, Bryan Clark
  • Patent number: 10279931
    Abstract: A method of forming a thermal protection system for high speed aircraft is described. The method includes mechanically working an uncured ablator material into a first surface of a felt layer such that the ablator material penetrates a distance into a thickness of the felt layer thereby forming an region that has a mixture of felt and ablator material, adding additional uncured ablator material to the worked ablator material, and curing the combined ablator material.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: May 7, 2019
    Assignee: The Boeing Company
    Inventors: Bryan Clark Brewer, Patrick Jacob Mobers
  • Publication number: 20180261503
    Abstract: The disclosure relates to a method of making molybdenum films utilizing boron and molybdenum nucleation layers. The resulting molybdenum films have low electrical resistivity, are substantially free of boron, and can be made at reduced temperatures compared to conventional chemical vapor deposition processes that do not use the boron or molybdenum nucleation layers. The molybdenum nucleation layer formed by this process can protect the substrate from the etching effect of MoCl5 or MoOCl4, facilitates nucleation of subsequent CVD Mo growth on top of the molybdenum nucleation layer, and enables Mo CVD deposition at lower temperatures. The nucleation layer can also be used to control the grain sizes of the subsequent CVD Mo growth, and therefore controls the electrical resistivity of the Mo film.
    Type: Application
    Filed: April 20, 2018
    Publication date: September 13, 2018
    Inventors: Shuang Meng, Richard Ulrich Assion, Thomas H. Baum, Bryan Clark Hendrix
  • Publication number: 20180158687
    Abstract: The present disclosure relates to a bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors, and ultra high purity versions thereof, methods of making, and methods of using these bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors in a vapor deposition process. One aspect of the disclosure relates to an ultrahigh purity bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursor of the formula Co2(CO)6(R3C?CR4), where R3 and R4 are different organic moieties and R4 is more electronegative or more electron withdrawing compared to R3.
    Type: Application
    Filed: November 21, 2017
    Publication date: June 7, 2018
    Inventors: Sangbum Han, Seobong Chang, Jaeeon Park, Bryan Clark Hendrix, Thomas H. Baum
  • Publication number: 20180142345
    Abstract: The disclosure relates to a method of making molybdenum films utilizing boron and molybdenum nucleation layers. The resulting molybdenum films have low electrical resistivity, are substantially free of boron, and can be made at reduced temperatures compared to conventional chemical vapor deposition processes that do not use the boron or molybdenum nucleation layers. The molybdenum nucleation layer formed by this process can protect the substrate from the etching effect of MoCl5 or MoOCl4, facilitates nucleation of subsequent CVD Mo growth on top of the molybdenum nucleation layer, and enables Mo CVD deposition at lower temperatures. The nucleation layer can also be used to control the grain sizes of the subsequent CVD Mo growth, and therefore controls the electrical resistivity of the Mo film.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 24, 2018
    Inventors: Shuang Meng, Richard Ulrich Assion, Thomas H. Baum, Bryan Clark Hendrix
  • Patent number: 9878801
    Abstract: A console assembly for use on a flight deck of an aircraft includes, but is not limited to, a console having a recess. The recess has an opening. The console assembly further includes a mounting assembly mounted within the recess. The console assembly further includes a support surface mounted to the mounting assembly. The console assembly further includes a closeout panel that is mounted to the support surface. The support surface fits within the recess. The mounting assembly facilitates movement of the support surface between a retracted and a deployed position. The support surface is disposed within the recess while in the retracted position and outside of the recess while in the deployed position. The closeout panel is disposed at a location on the support surface that causes the closeout panel to close the opening of the recess when the support surface is in the retracted position.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 30, 2018
    Assignees: C&D AEROSPACE CANADA CO., GULFSTREAM AEROSPACE CORPORATION
    Inventors: Tristan Flynn, Todd Loar, Eric Long, Conrad Strelzyk, Bryan Clarke
  • Publication number: 20170035341
    Abstract: Systems, devices and methods for the treatment of bladder conditions using bladder visualization without the need for optical elements and for subsequent direct electrical pacing are provided. The systems, devices and methods generally apply pacing stimulus directly to the bladder wall, from one or more of the inner and outer bladder surfaces.
    Type: Application
    Filed: August 4, 2016
    Publication date: February 9, 2017
    Inventors: Sandra Nagale, Shibaji Shome, Timothy Harrah, Mark Boden, Allan Shuros, Bryan Clark, Amedeo Chiavetta, Lynne Swanson, Dennis Werner