Patents by Inventor Bryan D. McCloskey

Bryan D. McCloskey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10957953
    Abstract: A battery employing lithium-oxygen chemistry may include an anode comprising lithium, an electrolyte, and a porous cathode. The electrolyte may include a lithium-containing salt; a partially fluorinated ether, such as 2,2-bis(trifluoromethyl)-1,3-dioxolane; and a co-solvent selected from the group consisting of ethers, amides, nitriles, and combinations thereof. In some examples, the electrolyte does not include a cyclic carbonate ester, a sulfolane, or a sulfolane derivative. The porous cathode allows oxygen to come into contact with the electrolyte.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: March 23, 2021
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Seok J. Kang, Bryan D. McCloskey, Takashi Mori, Satoru Narizuka, Gregory M. Wallraff
  • Patent number: 10770769
    Abstract: A method includes dispensing ion-conducting particles on a substrate comprising an adhesive to which the ion-conducting particles adhere; overcoating the ion conducting particles with a polymer; removing the substrate and the adhesive from the ion conducting particles; and removing a polymer overburden on the ion conducting particles to form a device that includes: (i) the polymer or a derivative thereof, and (ii) ion-conducting particles. At least a portion of the ion-conducting particles extend through the polymer or its derivative.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 8, 2020
    Assignees: International Business Machines Corporation, Asahi Kasei Kabushiki Kaisha
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Publication number: 20190109359
    Abstract: A method includes dispensing ion-conducting particles on a substrate comprising an adhesive to which the ion-conducting particles adhere; overcoating the ion conducting particles with a polymer; removing the substrate and the adhesive from the ion conducting particles; and removing a polymer overburden on the ion conducting particles to form a device that includes: (i) the polymer or a derivative thereof, and (ii) ion-conducting particles. At least a portion of the ion-conducting particles extend through the polymer or its derivative.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 11, 2019
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Patent number: 10170813
    Abstract: A method includes dispensing ion-conducting particles on a substrate comprising an adhesive to which the ion-conducting particles adhere; overcoating the ion conducting particles with a polymer; removing the substrate and the adhesive from the ion conducting particles; and removing a polymer overburden on the ion conducting particles to form a device that includes: (i) the polymer or a derivative thereof, and (ii) ion-conducting particles. At least a portion of the ion-conducting particles extend through the polymer or its derivative.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: January 1, 2019
    Assignees: International Business Machines Corporation, ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Publication number: 20170222290
    Abstract: A battery employing lithium-oxygen chemistry may include an anode comprising lithium, an electrolyte, and a porous cathode. The electrolyte may include a lithium-containing salt; a partially fluorinated ether, such as 2,2-bis(trifluoromethyl)-1,3-dioxolane; and a co-solvent selected from the group consisting of ethers, amides, nitriles, and combinations thereof. In some examples, the electrolyte does not include a cyclic carbonate ester, a sulfolane, or a sulfolane derivative. The porous cathode allows oxygen to come into contact with the electrolyte.
    Type: Application
    Filed: April 13, 2017
    Publication date: August 3, 2017
    Inventors: Seok J. Kang, Bryan D. McCloskey, Takashi Mori, Satoru Narizuka, Gregory M. Wallraff
  • Patent number: 9666918
    Abstract: A battery employing lithium-oxygen chemistry may include an anode comprising lithium, an electrolyte, and a porous cathode. The electrolyte may include a lithium-containing salt; a partially fluorinated ether, such as 2,2-bis(trifluoromethyl)-1,3-dioxolane; and a co-solvent selected from the group consisting of ethers, amides, nitriles, and combinations thereof. In some examples, the electrolyte does not include a cyclic carbonate ester, a sulfolane, or a sulfolane derivative. The porous cathode allows oxygen to come into contact with the electrolyte.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 30, 2017
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Seok J. Kang, Bryan D. McCloskey, Takashi Mori, Satoru Narizuka, Gregory M. Wallraff
  • Patent number: 9520627
    Abstract: A device includes a membrane that is: (i) impermeable to oxygen, and (ii) insoluble in at least one polar solvent; and ion conducting particles in the membrane. At least some of the particles extend from a first side of the membrane to an opposed second side of the membrane. The thickness of the membrane is 15 ?m to 100 ?m.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: December 13, 2016
    Assignees: International Business Machines Corporation, Asahi Kasei Kabushiki Kaisha
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Patent number: 9450278
    Abstract: A lithium-oxygen battery may include an anode, a cathode, and an electrolyte between, and in contact with, the anode and the cathode. The anode may include lithium and/or a lithium alloy. In some examples, the cathode defines a surface that is predominantly metal oxide with an electron conductivity of at least 10?1 Siemens per centimeter. In some examples, the cathode defines a surface in contact with oxygen, and includes ruthenium oxide. In some examples, the cathode defines a surface that is substantially covered by ruthenium oxide and is in contact with oxygen.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 20, 2016
    Assignees: International Business Machines Corporation, Volkswagen AG
    Inventors: Ho-Cheol Kim, Bryan D. McCloskey, Rouven Scheffler, Angela-Kristina Speidel, Sally A. Swanson, Gregory M. Wallraff
  • Publication number: 20160254560
    Abstract: A method includes dispensing ion-conducting particles on a substrate comprising an adhesive to which the ion-conducting particles adhere; overcoating the ion conducting particles with a polymer; removing the substrate and the adhesive from the ion conducting particles; and removing a polymer overburden on the ion conducting particles to form a device that includes: (i) the polymer or a derivative thereof, and (ii) ion-conducting particles. At least a portion of the ion-conducting particles extend through the polymer or its derivative.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Publication number: 20150280296
    Abstract: A battery employing lithium-oxygen chemistry may include an anode comprising lithium, an electrolyte, and a porous cathode. The electrolyte may include a lithium-containing salt; a partially fluorinated ether, such as 2,2-bis(trifluoromethyl)-1,3-dioxolane; and a co-solvent selected from the group consisting of ethers, amides, nitriles, and combinations thereof. In some examples, the electrolyte does not include a cyclic carbonate ester, a sulfolane, or a sulfolane derivative. The porous cathode allows oxygen to come into contact with the electrolyte.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicants: Central Glass Co., Ltd., International Business Machines Corporation
    Inventors: Seok J. Kang, Bryan D. McCloskey, Takashi Mori, Satoru Narizuka, Gregory M. Wallraff
  • Publication number: 20150255767
    Abstract: A device includes a membrane that is: (i) impermeable to oxygen, and (ii) insoluble in at least one polar solvent; and ion conducting particles in the membrane. At least some of the particles extend from a first side of the membrane to an opposed second side of the membrane. The thickness of the membrane is 15 ?m to 100 ?m.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 10, 2015
    Applicants: ASAHI KASEI KABUSHIKI KAISHA, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Naga Phani B. Aetukuri, Mark W. Hart, Ho-Cheol Kim, Shintaro Kitajima, Leslie E. Krupp, Bryan D. McCloskey, Robert D. Miller, John Campbell Scott, Winfried Wilcke
  • Publication number: 20140178774
    Abstract: A lithium-oxygen battery may include an anode, a cathode, and an electrolyte between, and in contact with, the anode and the cathode. The anode may include lithium and/or a lithium alloy. In some examples, the cathode defines a surface that is predominantly metal oxide with an electron conductivity of at least 10?1 Siemens per centimeter. In some examples, the cathode defines a surface in contact with oxygen, and includes ruthenium oxide. In some examples, the cathode defines a surface that is substantially covered by ruthenium oxide and is in contact with oxygen.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: Volkswagen Aktiengesellschaft, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ho-Cheol Kim, Bryan D. McCloskey, Rouven Scheffler, Angela-Kristina Speidel, Sally A. Swanson, Gregory M. Wallraff
  • Publication number: 20120111791
    Abstract: The present invention includes methods and compositions for liquid separation and water purification. The present invention includes a purification membrane having a polymer matrix purification membrane that has been treated with hydroquinone, catechol, and/or dopamine coated membrane with a high water flux.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: Board of Regents, The University of Texas System
    Inventors: Benny D. Freeman, Daniel J. Miller, Bryan D. McCloskey, Christopher W. Bielawski, Daniel R. Dreyer
  • Patent number: 8017050
    Abstract: The present invention includes methods and compositions for liquid separation and water purification. The present invention includes a purification membrane having a polymer matrix purification membrane that has been treated with dopamine to form a polydopamine coated membrane with a high water flux and a high hydrophilicity.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 13, 2011
    Assignee: Board of Regents The University of Texas System
    Inventors: Benny D. Freeman, Ho Bum Park, Bryan D. McCloskey
  • Publication number: 20100059433
    Abstract: The present invention describes methods and compositions for the reduction, prevention and elimination of biofilm formation on a surface. The present invention provides a method of depositing a coating material to reduce or prevent biofilm formation on a surface by adding a dopamine coating material to a liquid solvent to form a solution mixture, adjusting a pH of the solution mixture to 8, 9, or 10 and dissolving the dopamine coating material in the liquid solvent. The solution mixture is then placed into contact with one or more surfaces to form a dopamine coating on the surface to reduce biofilm formation.
    Type: Application
    Filed: July 9, 2009
    Publication date: March 11, 2010
    Applicant: Board of Regents, The University of Texas System
    Inventors: Benny D. Freeman, Ho Bum Park, Bryan D. McCloskey, Daniel J. Miller
  • Publication number: 20100051538
    Abstract: The present invention includes methods and compositions for liquid separation and water purification. The present invention includes a purification membrane having a polymer matrix purification membrane that has been treated with dopamine to form a polydopamine coated membrane with a high water flux and a high hydrophilicity.
    Type: Application
    Filed: July 9, 2009
    Publication date: March 4, 2010
    Applicant: Board of Regents, The University of Texas System
    Inventors: Benny D. Freeman, Ho Bum Park, Bryan D. McCloskey
  • Patent number: 7601321
    Abstract: The present invention encompasses methods and apparatus for creating metal nanoparticles embedded in a carbonaceous char, the conversion of an carbonaceous char with embedded metallic nanoparticles to graphite-encased nano-sized metal particles surrounded by char, the separation of the graphite encased metal particles from the char matrix, and the related preparation and isolation of carbon nanosphere materials with or without the enclosed metal nanoparticles, and the uses of such carbon nanospheres and graphite enclosed metal nanoparticles as supports and enhancers for fuel cell electrocatalysts and other applications.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: October 13, 2009
    Inventors: J. Thomas McKinnon, Andrew M. Herring, Bryan D. McCloskey