Patents by Inventor Bryan K. Glover

Bryan K. Glover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724240
    Abstract: A regenerator vessel for adsorbing halogen-containing material from a regenerator vent gas stream has a plurality of catalyst nozzles disposed at a top portion of the regenerator vessel. A first gas outlet is associated with a chlorination zone, and a second gas outlet associated with a combustion zone. A drying zone is in fluid communication with an air heater and the drying zone located in a bottom portion of the regenerator vessel. The first gas outlet is configured to withdraw a first gas stream from the chlorination zone and the second gas outlet is configured to withdraw a second gas stream from the combustion zone. The top portion of the regenerator vessel has an adsorption zone having a vent gas inlet port, a vent gas outlet port, and a portion of an annular catalyst bed.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: August 15, 2023
    Assignee: UOP LLC
    Inventors: Jennifer J. Ozmen, Rebecca Mudrock, Bryan K. Glover, Hosoo Lim, Joel S. Paustian
  • Publication number: 20220203319
    Abstract: A regenerator vessel for adsorbing halogen-containing material from a regenerator vent gas stream has a plurality of catalyst nozzles disposed at a top portion of the regenerator vessel. A first gas outlet is associated with a chlorination zone, and a second gas outlet associated with a combustion zone. A drying zone is in fluid communication with an air heater and the drying zone located in a bottom portion of the regenerator vessel. The first gas outlet is configured to withdraw a first gas stream from the chlorination zone and the second gas outlet is configured to withdraw a second gas stream from the combustion zone. The top portion of the regenerator vessel has an adsorption zone having a vent gas inlet port, a vent gas outlet port, and a portion of an annular catalyst bed.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Jennifer J. Ozmen, Rebecca Mudrock, Bryan K. Glover, Hosoo Lim, Joel S. Paustian
  • Patent number: 11135542
    Abstract: This present disclosure relates to processes and apparatuses for removing contaminants from hydrogen streams. More specifically, the present disclosure relates to processes and apparatuses wherein hydrogen is used in units that utilize catalysts that are sensitive to oxygenates. The contaminants like carbon oxides and water are removed simultaneously from the hydrogen stream to provide a rich hydrogen stream with high purity to units that utilizes catalysts that are sensitive to oxygenates.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: October 5, 2021
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Mohamed S. M. Shakur
  • Patent number: 10851315
    Abstract: Processes for the production of a gasoline blend. A C7 portion of a naphtha stream is first isomerized to increase the branched, iso-paraffins, and then, the isomerized effluent is passed to a dehydrogenation reaction zone. In the dehydrogenation zone, the C7 saturated hydrocarbons are convert to C7 olefins. The C7 olefins have a higher octane number than the C7 saturated hydrocarbons, and the branched olefins have a higher octane number than the normal olefins. The C7 olefins can be blended in a gasoline pool. C5 and C6 hydrocarbons can be isomerized and dehydrogenated as well, separately or with the C7 components.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 1, 2020
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Rajeswar Gattupalli, Bryan K. Glover, Mohamed Shakur, Keith A. Couch, Michael W. Penninger, Soumendra Mohan Banerjee, Deepak Bisht, Gautam Pandey, Amit Sharma, Priyesh Jayendrakumar Jani, Nishesh Garg
  • Patent number: 10829703
    Abstract: Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: November 10, 2020
    Inventors: John A. Petri, Bryan K. Glover, Andrea G. Bozzano, Mary Jo Wier
  • Publication number: 20200102511
    Abstract: Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Inventors: John A. Petri, Bryan K. Glover, Andrea G. Bozzano, Mary Jo Wier
  • Patent number: 10557091
    Abstract: A reforming reactor and process of using same in which residence time of feed within a chamber of a reactor is shortened. Feed is injected into the reactor into a non-reactive zone. The non-reactive zone has two portions, a first portion receiving the feed, and a second portion receiving a purge gas. The purge gas will flow from the second portion to the first portion to prevent flow of the feed from the first portion to the second portion. The combined gas may be passed to a reaction zone for catalytic reforming. The first portion and the second portion may be separated by a baffle.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 11, 2020
    Assignee: UOP LLC
    Inventors: Ka L. Lok, Bryan K. Glover, Alexander V. Sabitov, Jeffrey R. Grott
  • Patent number: 10369556
    Abstract: An integrated process for gasoline production is described. The process includes introducing a feed comprising n-C5 hydrocarbons into a disproportionation reaction zone in the presence of a disproportionation catalyst to form a disproportionation mixture comprising iso-C4 and C6+ disproportionation products and unreacted n-C5 hydrocarbons. An iso-C4 hydrocarbon stream and an olefin feed are introduced into an alkylation reaction zone in the presence of an alkylation catalyst to produce an alkylation mixture comprising alkylate and unreacted iso-C4 paraffins. The disproportionation mixture and the alkylation mixture are combined, and the combined mixture is separated into at least a stream comprising the alkylate product, an iso-C4 stream, and an unreacted n-C5 hydrocarbon stream. The iso-C4 stream is recycled to the alkylation reaction zone, and the unreacted n-C5 hydrocarbon stream is recycled to the disproportionation reaction zone. The stream comprising the alkylate product is recovered.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 6, 2019
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Stuart Smith, Douglas A. Nafis, Alakananda Bhattacharyya, Bryan K. Glover, Susie C. Martins
  • Patent number: 10240097
    Abstract: The present disclosure generally relates to methods and systems for reforming and isomerizing hydrocarbons. More particularly, the present disclosure relates to a novel combination of two traditionally separate reforming and isomerization reaction zones. A first hydrocarbon stream comprising C5-C6 hydrocarbons is isomerized in a first isomerization zone. A second hydrocarbon stream comprising C7+ hydrocarbons is reformed thus producing a C7 hydrocarbon stream and a C8 hydrocarbon stream. The reformed C7 stream is then isomerized in a second isomerization zone.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 26, 2019
    Assignee: UOP LLC
    Inventor: Bryan K. Glover
  • Publication number: 20190002371
    Abstract: The present invention relates to heavy desorbent and light desorbent aromatics complex flow scheme. More particularly, this invention relates to the integration of a dual raffinate para-xylene separation process with two isomerization zones. The first isomerization zone is a liquid phase isomerization zone and the second isomerization zone is either an ethylbenzene isomerization zone, or an isomerization zone using MAPSO-31.
    Type: Application
    Filed: June 21, 2018
    Publication date: January 3, 2019
    Inventors: Linda S. Cheng, James A. Johnson, Bryan K. Glover, David S. Krimsky
  • Publication number: 20190002771
    Abstract: The invention provides a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two or more sequential catalyst zones. The initial catalyst zone is a fixed-bed system and contains an initial catalytic composition comprising a platinum component, a germanium or rhenium component, a refractory inorganic oxide, potassium and a halogen component and then there is a terminal catalyst zone with a terminal catalyst composition that has a similar composition but with an essential lack of potassium. The addition of potassium was found to improve the yield of C5+ hydrocarbons.
    Type: Application
    Filed: June 12, 2018
    Publication date: January 3, 2019
    Inventors: David S. Lafyatis, Gary A. Marr, Bryan K. Glover
  • Publication number: 20180117523
    Abstract: This present disclosure relates to processes and apparatuses for removing contaminants from hydrogen streams. More specifically, the present disclosure relates to processes and apparatuses wherein hydrogen is used in units that utilize catalysts that are sensitive to oxygenates. The contaminants like carbon oxides and water are removed simultaneously from the hydrogen stream to provide a rich hydrogen stream with high purity to units that utilizes catalysts that are sensitive to oxygenates.
    Type: Application
    Filed: October 17, 2017
    Publication date: May 3, 2018
    Inventors: Bryan K. Glover, Mohamed S. M. Shakur
  • Publication number: 20180117581
    Abstract: A process for regenerating catalyst particles is disclosed. The process includes the steps: (a) withdrawing a regeneration zone effluent comprising halogen from a regeneration zone, wherein the regeneration zone contains catalyst particles comprising halogen; (b) contacting a first portion of the regeneration zone effluent with adsorbent in a first adsorption zone, removing halogen from the first portion of the regeneration zone effluent, and withdrawing from the first adsorption zone a first adsorption zone effluent; (c) contacting the first adsorption zone effluent with a water removing material to create a first water-depleted stream; and (d) passing the first water-depleted stream to the regeneration zone. Other embodiments include different orders of the steps.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 3, 2018
    Inventors: Bryan K. Glover, Mohamed S. Shakur
  • Publication number: 20180086991
    Abstract: The present disclosure generally relates to methods and systems for reforming and isomerizing hydrocarbons. More particularly, the present disclosure relates to a novel combination of two traditionally separate reforming and isomerization reaction zones. A first hydrocarbon stream comprising C5-C6 hydrocarbons is isomerized in a first isomerization zone. A second hydrocarbon stream comprising C7+ hydrocarbons is reformed thus producing a C7 hydrocarbon stream and a C8 hydrocarbon stream. The reformed C7 stream is then isomerized in a second isomerization zone.
    Type: Application
    Filed: September 30, 2017
    Publication date: March 29, 2018
    Inventor: Bryan K. Glover
  • Publication number: 20180029956
    Abstract: A reforming reactor and process of using same in which residence time of feed within a chamber of a reactor is shortened. Feed is injected into the reactor into a non-reactive zone. The non-reactive zone has two portions, a first portion receiving the feed, and a second portion receiving a purge gas. The purge gas will flow from the second portion to the first portion to prevent flow of the feed from the first portion to the second portion. The combined gas may be passed to a reaction zone for catalytic reforming. The first portion and the second portion may be separated by a baffle.
    Type: Application
    Filed: May 22, 2017
    Publication date: February 1, 2018
    Inventors: Ka L. Lok, Bryan K. Glover, Alexander V. Sabitov, Jeffrey R. Grott
  • Patent number: 9868118
    Abstract: A process for regenerating catalyst particles is disclosed. The process includes the steps: (a) withdrawing a regeneration zone effluent comprising halogen from a regeneration zone, wherein the regeneration zone contains catalyst particles comprising halogen; (b) contacting a first portion of the regeneration zone effluent with adsorbent in a first adsorption zone, removing halogen from the first portion of the regeneration zone effluent, and withdrawing from the first adsorption zone a first adsorption zone effluent; (c) contacting the first adsorption zone effluent with a water removing material to create a first water-depleted stream; and (d) passing the first water-depleted stream to the regeneration zone. Other embodiments include different orders of the steps.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: January 16, 2018
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Mohamed S. Shakur
  • Patent number: 9816753
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: November 14, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Publication number: 20170234613
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Patent number: 9670114
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Patent number: 9663423
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled, and separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 30, 2017
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Robert Edison Tsai, Xin X. Zhu, William Yanez