Patents by Inventor Bryan Kristian Griffith

Bryan Kristian Griffith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8443693
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 21, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 8443694
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 21, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Publication number: 20120279343
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicants: The U.S.A. As Represented by the Admisnistrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Publication number: 20120279338
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 8291788
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 23, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 8176809
    Abstract: A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 15, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chris A. Ihrke, Adam H. Parsons, Joshua S. Mehling, Bryan Kristian Griffith
  • Publication number: 20110067517
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS,INC., The U.S.A .As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 7784363
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 31, 2010
    Assignees: GM Global Technology Operations, Inc., The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith
  • Publication number: 20100145510
    Abstract: A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC, The U.S.A As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Adam H. Parsons, Joshua S. Mehling, Bryan Kristian Griffith
  • Publication number: 20100077867
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE UNITED STATES OF AMERICA
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith