Patents by Inventor Bryan Liao

Bryan Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220115211
    Abstract: Provided is a method of igniting a plasma to quickly ignite a plasma without causing undesirable arcing. The method of igniting a plasma according to the present invention includes: a supplying step of supplying a process gas into a chamber 1 provided in a plasma generating system; an igniting step of igniting a plasma by irradiating the process gas supplied into the chamber with laser light L emitted from a semiconductor laser 10 and applying a high frequency power to a coil 2 or an electrode 91 for generating plasma provided in the plasma generating system; and a stopping step of stopping emission of the laser light from the semiconductor laser after the plasma is ignited. Preferably, the coil is a cylindrical coil, and in the igniting step, the laser light is obliquely irradiated from above the cylindrical coil toward below the cylindrical coil.
    Type: Application
    Filed: May 9, 2019
    Publication date: April 14, 2022
    Inventor: Bryan LIAO
  • Patent number: 9639097
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber for a wide range of setpoint temperatures and reduced energy consumption. Temperature control is coordinated between a coolant liquid loop and a heat source by a control algorithm implemented by the plasma processing module controller. The control algorithm may completely stop the flow of coolant liquid to a temperature-controlled component in response to a feedback signal indicating an actual temperature is below the setpoint temperature. The control algorithm may further be based at least in part on a feedforward control signal derived from a plasma power or change in plasma power input into the processing chamber during process recipe execution.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: May 2, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Kartik Ramaswamy, Bryan Liao, Sergio Shoji, Duy D. Nguyen, Hamid Noorbakhsh, David Palagashvili
  • Patent number: 8962488
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Bryan Liao, Katsumasa Kawasaki, Yashaswini Pattar, Sergio Fukuda Shoji, Duy D. Nguyen, Kartik Ramaswamy, Ankur Agarwal, Phillip Stout, Shahid Rauf
  • Patent number: 8880227
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber for a wide range of setpoint temperatures and reduced energy consumption. Temperature control is coordinated between a coolant liquid loop and a heat source by a control algorithm implemented by the plasma processing module controller. The control algorithm may completely stop the flow of coolant liquid to a temperature-controlled component in response to a feedback signal indicating an actual temperature is below the setpoint temperature. The control algorithm may further be based at least in part on a feedforward control signal derived from a plasma power or change in plasma power input into the processing chamber during process recipe execution.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Kartik Ramaswamy, Bryan Liao, Sergio Shoji, Duy D. Nguyen, Hamid Noorbakhsh, David Palagashvili
  • Patent number: 8513889
    Abstract: Methods and apparatus for tuning matching networks are provided herein. A method of tuning a matching network includes providing a matching network coupling an RF source to a load, the matching network having a tunable element disposed at a first set point; increasing a value of the tunable element by a first step above the first set point; sensing a first adjusted value of a reflected RF power; decreasing the value of the tunable element by the first step below the first set point; sensing a second adjusted value of the reflected RF power; comparing the first and the second adjusted values of the reflected RF power; and moving the tunable element to a second set point that corresponds to a position having a lowest adjusted value of the reflected RF power. The method may be repeated until the reflected RF power falls within an acceptable reflected RF power range.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Chunlei Zhang, Sergio F. Shoji, Andrey Semenin, Kartik Ramaswamy, James P. Cruse, Bryan Liao
  • Patent number: 8404598
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Bryan Liao, Katsumasa Kawasaki, Yashaswini Pattar, Sergio Fukuda Shoji, Duy D. Nguyen, Kartik Ramaswamy, Ankur Agarwal, Phillip Stout, Shahid Rauf
  • Patent number: 8133819
    Abstract: Etching of carbonaceous layers with an etchant gas mixture including molecular oxygen (O2) and a gas including a carbon sulfur terminal ligand. A high RF frequency source is employed in certain embodiments to achieve a high etch rate with high selectivity to inorganic dielectric layers. In certain embodiments, the etchant gas mixture includes only the two components, COS and O2, but in other embodiments additional gases, such as at least one of molecular nitrogen (N2), carbon monoxide (CO) or carbon dioxide (CO2) may be further employed to etch to carbonaceous layers.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 13, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Judy Wang, Shawming Ma, Chang-Lin Hsieh, Bryan Liao, Jie Zhou, Hun Sang Kim
  • Publication number: 20120048467
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber for a wide range of setpoint temperatures and reduced energy consumption. Temperature control is coordinated between a coolant liquid loop and a heat source by a control algorithm implemented by the plasma processing module controller. The control algorithm may completely stop the flow of coolant liquid to a temperature-controlled component in response to a feedback signal indicating an actual temperature is below the setpoint temperature. The control algorithm may further be based at least in part on a feedforward control signal derived from a plasma power or change in plasma power input into the processing chamber during process recipe execution.
    Type: Application
    Filed: March 3, 2011
    Publication date: March 1, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Kartik Ramaswamy, Bryan Liao, Sergio Shoji, Duy D. Nguyen, Hamid Noorbakhsh, David Palagashvili
  • Publication number: 20120000888
    Abstract: Methods and apparatus for minimizing reflected radio frequency (RF) energy are provided herein. In some embodiments, an apparatus may include a first RF energy source having frequency tuning to provide a first RF energy, a first matching network coupled to the first RF energy source, one or more sensors to provide first data corresponding to a first magnitude and a first phase of a first impedance of the first RF energy, wherein the first magnitude is equal a first resistance defined as a first voltage divided by a first current and the first phase is equal to a first phase difference between the first voltage and the first current, and a controller adapted to control a first value of a first variable element of the first matching network based upon the first magnitude and to control a first frequency provided by the first RF energy source based upon the first phase.
    Type: Application
    Filed: January 27, 2011
    Publication date: January 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: KATSUMASA KAWASAKI, BRYAN LIAO
  • Publication number: 20110162798
    Abstract: Methods and apparatus for tuning matching networks are provided herein. A method of tuning a matching network includes providing a matching network coupling an RF source to a load, the matching network having a tunable element disposed at a first set point; increasing a value of the tunable element by a first step above the first set point; sensing a first adjusted value of a reflected RF power; decreasing the value of the tunable element by the first step below the first set point; sensing a second adjusted value of the reflected RF power; comparing the first and the second adjusted values of the reflected RF power; and moving the tunable element to a second set point that corresponds to a position having a lowest adjusted value of the reflected RF power. The method may be repeated until the reflected RF power falls within an acceptable reflected RF power range.
    Type: Application
    Filed: October 6, 2010
    Publication date: July 7, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: CHUNLEI ZHANG, SERGIO F. SHOJI, ANDREY SEMENIN, KARTIK RAMASWAMY, JAMES P. CRUSE, BRYAN LIAO
  • Publication number: 20110031216
    Abstract: Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: BRYAN LIAO, KATSUMASA KAWASAKI, YASHASWINI PATTAR, SERGIO FUKUDA SHOJI, DUY D. NGUYEN, KARTIK RAMASWAMY, ANKUR AGARWAL, PHILLIP STOUT, SHAHID RAUF
  • Publication number: 20090212010
    Abstract: Etching of carbonaceous layers with an etchant gas mixture including molecular oxygen (O2) and a gas including a carbon sulfur terminal ligand. A high RF frequency source is employed in certain embodiments to achieve a high etch rate with high selectivity to inorganic dielectric layers. In certain embodiments, the etchant gas mixture includes only the two components, COS and O2, but in other embodiments additional gases, such as at least one of molecular nitrogen (N2), carbon monoxide (CO) or carbon dioxide (CO2) may be further employed to etch to carbonaceous layers.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventors: Judy Wang, Shawming Ma, Chang-Lin Hsieh, Bryan Liao, Jie Zhou, Hun Sang Kim