Patents by Inventor Bryan Pennington
Bryan Pennington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11208732Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.Type: GrantFiled: September 6, 2019Date of Patent: December 28, 2021Assignee: Lam Research CorporationInventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
-
Publication number: 20190390361Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.Type: ApplicationFiled: September 6, 2019Publication date: December 26, 2019Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
-
Patent number: 10443146Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.Type: GrantFiled: March 30, 2017Date of Patent: October 15, 2019Assignee: Lam Research CorporationInventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
-
Patent number: 10358738Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal on a substrate. In many cases, an electroplating process may be monitored to ensure that it is operating within a pre-defined processing window. This monitoring may involve application of a controlled potential between the substrate and a reference electrode after the electroplating process is substantially complete (e.g., after recessed features on the substrate are substantially filled). The current delivered to the substrate during application of the controlled potential is monitored, and a peak current is determined. This peak current, often referred to herein as the potential-controlled exit peak current, can be compared against an expected range to determine whether the electroplating process is operating as desired.Type: GrantFiled: September 19, 2016Date of Patent: July 23, 2019Assignee: Lam Research CorporationInventors: Quan Ma, Shantinath Ghongadi, Zhian He, Bryan Pennington, Tariq Majid, Jonathan David Reid
-
Publication number: 20180282894Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.Type: ApplicationFiled: March 30, 2017Publication date: October 4, 2018Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
-
Publication number: 20180080140Abstract: Various embodiments herein relate to methods and apparatus for electroplating metal on a substrate. In many cases, an electroplating process may be monitored to ensure that it is operating within a pre-defined processing window. This monitoring may involve application of a controlled potential between the substrate and a reference electrode after the electroplating process is substantially complete (e.g., after recessed features on the substrate are substantially filled). The current delivered to the substrate during application of the controlled potential is monitored, and a peak current is determined. This peak current, often referred to herein as the potential-controlled exit peak current, can be compared against an expected range to determine whether the electroplating process is operating as desired.Type: ApplicationFiled: September 19, 2016Publication date: March 22, 2018Inventors: Quan Ma, Shantinath Ghongadi, Zhian He, Bryan Pennington, Tariq Majid, Jonathan David Reid
-
Patent number: 8500983Abstract: A plating protocol is employed to control plating of metal onto a wafer comprising a conductive seed layer. Initially, the protocol employs cathodic protection as the wafer is immersed in the plating solution. In certain embodiments, the current density of the wafer is constant during immersion. In a specific example, potentiostatic control is employed to produce a current density in the range of about 1.5 to 20 mA/cm2. The immersion step is followed by a high current pulse step. During bottom up fill inside the features of the wafer, a constant current or a current with a micropulse may be used. This protocol may protect the seed from corrosion while enhancing nucleation during the initial stages of plating.Type: GrantFiled: May 24, 2010Date of Patent: August 6, 2013Assignee: Novellus Systems, Inc.Inventors: Thomas A. Ponnuswamy, Bryan Pennington, Clifford Berry, Bryan L. Buckalew, Steven T. Mayer
-
Patent number: 8308931Abstract: An apparatus for electroplating a layer of metal on the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer (preferably within 5 mm of the wafer surface) which serves to modulate ionic current at the wafer surface, and a second cathode configured to divert a portion of current from the wafer surface. The ionically resistive ionically permeable element in a preferred embodiment is a disk made of a resistive material having a plurality of perforations formed therein, such that perforations do not form communicating channels within the body of the disk. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.Type: GrantFiled: November 7, 2008Date of Patent: November 13, 2012Assignee: Novellus Systems, Inc.Inventors: Jonathan Reid, Bryan Buckalew, Zhian He, Seyang Park, Seshasayee Varadarajan, Bryan Pennington, Thomas Ponnuswamy, Patrick Breling, Glenn Ibarreta, Steven Mayer
-
Publication number: 20100300888Abstract: A plating protocol is employed to control plating of metal onto a wafer comprising a conductive seed layer. Initially, the protocol employs cathodic protection as the wafer is immersed in the plating solution. In certain embodiments, the current density of the wafer is constant during immersion. In a specific example, potentiostatic control is employed to produce a current density in the range of about 1.5 to 20 mA/cm2. The immersion step is followed by a high current pulse step. During bottom up fill inside the features of the wafer, a constant current or a current with a micropulse may be used. This protocol may protect the seed from corrosion while enhancing nucleation during the initial stages of plating.Type: ApplicationFiled: May 24, 2010Publication date: December 2, 2010Inventors: Thomas A. Ponnuswamy, Bryan Pennington, Clifford Berry, Bryan L. Buckalew, Steven T. Mayer
-
Publication number: 20100032310Abstract: An apparatus for electroplating a layer of metal on the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer (preferably within 5 mm of the wafer surface) which serves to modulate ionic current at the wafer surface, and a second cathode configured to divert a portion of current from the wafer surface. The ionically resistive ionically permeable element in a preferred embodiment is a disk made of a resistive material having a plurality of perforations formed therein, such that perforations do not form communicating channels within the body of the disk. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.Type: ApplicationFiled: November 7, 2008Publication date: February 11, 2010Inventors: Jonathan Reid, Bryan Buckalew, Zhian He, Seyang Park, Seshasayee Varadarajan, Bryan Pennington, Thomas Ponnuswamy, Patrick Breiling, Glenn Ibarreta, Steven Mayer