Patents by Inventor Bryan William Wakefield

Bryan William Wakefield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194107
    Abstract: The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 7, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ximao Feng, Wen-Lung Kuang, Pushkar Tandon, Ruchi Tandon, Shudong Xiao, Bryan William Wakefield, Andy Fenglei Zhou
  • Patent number: 11181687
    Abstract: An optical fiber comprising: a core having an outer radius r1; a cladding having an outer radius r4<45 microns; a primary coating surrounding the cladding and having an outer radius r5 and a thickness tp>8 microns, the primary coating having in situ modulus EP of 0.35 MPa or less and a spring constant ?P<1.6 MPa, where ?P=2EP r4/tP; and a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6, a thickness tS=r6?r5, in situ modulus ES of 1200 MPa or greater, wherein >10 microns and r6?85 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon, Bryan William Wakefield
  • Publication number: 20210179477
    Abstract: A system for processing optical fiber includes a draw furnace, a fiber conveyance pathway extending between an upstream end positioned at the draw furnace and a downstream end positioned opposite the upstream end, where optical fiber is conveyed along the fiber conveyance pathway from the upstream end to the downstream end in a fiber conveyance direction, a muffle in communication with the draw furnace and positioned downstream of the draw furnace, a second cooling device annularly surrounding the fiber conveyance pathway downstream from the draw furnace, the second cooling device including one or more second cooling device heating elements and a first cooling device positioned between the draw furnace and the second cooling device, wherein the first cooling device directs a fluid to contact the optical fiber.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 17, 2021
    Inventors: Steven Akin Dunwoody, Nikolaos Pantelis Kladias, Robert Clark Moore, Jason Roy Pace, Christopher Scott Thomas, Bryan William Wakefield, Chunfeng Zhou
  • Publication number: 20210055490
    Abstract: The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 25, 2021
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ximao Feng, Wen-Lung Kuang, Pushkar Tandon, Ruchi Tandon, Shudong Xiao, Bryan William Wakefield, Andy Fenglei Zhou
  • Publication number: 20190331850
    Abstract: An optical fiber comprising: a core having an outer radius ri; a cladding having an outer radius r4<45 microns; a primary coating surrounding the cladding and having an outer radius r5 and a thickness tp>8 microns, the primary coating having in situ modulus EP of 0.35 MPa or less and a spring constant ?P<1.6 MPa, where ?P=2EP r4/tP; and a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6, a thickness tS=r6?r5, in situ modulus ES of 1200 MPa or greater, wherein >10 microns and r6?85 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 31, 2019
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon, Bryan William Wakefield
  • Publication number: 20190322578
    Abstract: An optical fiber coating die assembly is provided. The optical fiber coating die assembly includes a housing defining a guide chamber having an inlet for receiving optical fiber and an outlet, a guide die located at the outlet of the guide chamber, and a sizing die. The optical fiber coating die assembly also includes a coating applicator disposed between the guide die and the sizing die, and a tube operatively coupled to the inlet of the guide chamber and axially aligned with the chamber to receive the optical fiber fed into the guide chamber and provide a barrier to air flow.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 24, 2019
    Inventors: Dana Craig Bookbinder, Darren Andrew Stainer, Pushkar Tandon, Ruchi Tandon, Bryan William Wakefield