Patents by Inventor Bryant D. Taylor

Bryant D. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10605673
    Abstract: A wireless temperature sensor includes an electrical conductor and a material spaced apart from the conductor and located within one or more of the responding electric field and responding magnetic field of the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in one of dielectric properties and magnetic permeability properties in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: March 31, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Stanley E. Woodard, Chuantong Wang, Bryant D. Taylor
  • Publication number: 20180348066
    Abstract: A wireless temperature sensor includes an electrical conductor and a material spaced apart from the conductor and located within one or more of the responding electric field and responding magnetic field of the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in one of dielectric properties and magnetic permeability properties in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Application
    Filed: July 23, 2018
    Publication date: December 6, 2018
    Inventors: Stanley E. Woodard, CHUANTONG WANG, BRYANT D. TAYLOR
  • Patent number: 10031031
    Abstract: A wireless temperature sensor includes an electrical conductor and a material spaced apart from the conductor and located within one or more of the responding electric field and responding magnetic field of the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in one of dielectric properties and magnetic permeability properties in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 24, 2018
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATION OF NASA.
    Inventors: Stanley E. Woodard, Chuantong Wang, Bryant D. Taylor
  • Patent number: 9733203
    Abstract: A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 15, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: Stanley E. Woodard, Donald M. Oglesby, Bryant D. Taylor
  • Publication number: 20160238561
    Abstract: A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Inventors: Stanley E. Woodard, Donald M. Oglesby, Bryant D. Taylor
  • Patent number: 9329149
    Abstract: A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 3, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Donald M. Oglesby, Bryant D. Taylor
  • Patent number: 9329153
    Abstract: An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 3, 2016
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Publication number: 20140269825
    Abstract: A wireless temperature sensor includes an electrical conductor and a material spaced apart from the conductor and located within one or more of the responding electric field and responding magnetic field of the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in one of dielectric properties and magnetic permeability properties in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Inventors: Stanley E. Woodard, Chuantong Wang, Bryant D. Taylor
  • Publication number: 20140199774
    Abstract: A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Inventors: Stanley E. Woodard, Donald M. Oglesby, Bryant D. Taylor
  • Patent number: 8430327
    Abstract: A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: April 30, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 8042739
    Abstract: A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7902815
    Abstract: A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7711509
    Abstract: A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 4, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7683797
    Abstract: A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 23, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Thomas W. Jones, Bryant D. Taylor, A. Shams Qamar
  • Publication number: 20090302111
    Abstract: A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.
    Type: Application
    Filed: September 28, 2007
    Publication date: December 10, 2009
    Applicant: United States of America as rpresented by the Administrator of the National Aeronautics and Spac
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7589525
    Abstract: A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7506541
    Abstract: A system and method are provided for determining the volume of a fluid in a container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 24, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Publication number: 20090072814
    Abstract: A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.
    Type: Application
    Filed: September 18, 2007
    Publication date: March 19, 2009
    Applicants: Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor
  • Patent number: 7255004
    Abstract: A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 14, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Bryant D. Taylor, Stanley E. Woodard
  • Publication number: 20070181683
    Abstract: A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 9, 2007
    Applicant: Administrator of the National Aeronautics and Space Administration
    Inventors: Stanley E. Woodard, Bryant D. Taylor