Patents by Inventor Bryant J. Pudil

Bryant J. Pudil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10722636
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: July 28, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Publication number: 20200215250
    Abstract: The invention relates to devices, systems, and methods for calculating a bicarbonate concentration in a fluid used in dialysis. The devices, systems, and methods can be used to calculate the bicarbonate concentration in either dialysate or blood. The invention measures the amount of carbon dioxide in both an acidified and non-acidified solution and calculates the bicarbonate concentration based on the difference in carbon dioxide concentrations.
    Type: Application
    Filed: November 22, 2019
    Publication date: July 9, 2020
    Inventors: Eric A. Grovender, Thomas E. Meyer, Bryant J. Pudil
  • Patent number: 10695481
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 30, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Patent number: 10668202
    Abstract: Parallel modules for in-line recharging of sorbent materials using alternate duty cycles for a sorbent cartridge. The sorbent cartridge can have two or more modules contained therein having connectors connecting each of the modules. One or more of the modules can be reusable and the sorbent materials therein can be recharged.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: June 2, 2020
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Martin T. Gerber, David B. Lura, Thomas E. Meyer
  • Publication number: 20200156044
    Abstract: The invention relates to devices, systems, and methods for recharging zirconium phosphate and/or zirconium oxide in reusable sorbent modules. The devices, systems, and methods provide for precision recharging of the zirconium phosphate and/or zirconium oxide to avoid the need of excess recharge solutions. The devices systems and methods also provide for calculation of the volumes of recharge solution needed for fully recharging the zirconium phosphate and zirconium oxide modules.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Bryant J. Pudil, Christopher M. Hobot, Martin T. Gerber
  • Publication number: 20200086297
    Abstract: The invention relates to devices, systems, and methods for precision recharging of sorbent materials in a sorbent module. The devices, systems, and methods use sensor-based analysis of an effluent of the sorbent module during recharging to set recharge parameters used in recharging the sorbent material.
    Type: Application
    Filed: June 10, 2019
    Publication date: March 19, 2020
    Inventors: Bryant J. Pudil, Christopher M. Hobot, Martin T. Gerber
  • Publication number: 20200086309
    Abstract: The invention relates to devices, systems, and methods for mixing one or more solutions to generate a recharge solution having specified concentrations of hydroxide and free chlorine for recharging and disinfecting zirconium oxide in reusable sorbent modules. The devices, systems, and methods can generate a recharge solution by a sorbent recharger that is introduced through the sorbent module to recharge the zirconium oxide.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 19, 2020
    Inventors: Sukalyan Dutta, Bryant J. Pudil, Krishnaraja Nellikunje, Christopher M. Hobot
  • Patent number: 10583236
    Abstract: A blood based solute monitoring system for measuring at least one blood solute species that has a first recirculation flow path in fluid communication with a dialyzer. The first recirculation flow path is configured to allow a fluid to recirculate through a dialyzer such that the concentration of at least one solute species in the fluid becomes equilibrated to the solute species concentration of the blood in a blood compartment of the dialyzer. The blood solute monitoring system has at least one sensor to measure a fluid characteristic.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: March 10, 2020
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Thomas E. Meyer, David B. Lura, Martin T. Gerber
  • Publication number: 20200061269
    Abstract: The invention relates to devices, systems, and methods for mixing one or more solutions to generate a recharge solution having specified concentrations of a sodium salt and acid for recharging and disinfecting zirconium phosphate in reusable sorbent modules. The devices, systems, and methods can generate a recharge solution by a sorbent recharger that is introduced through the sorbent module to recharge and to disinfect the zirconium phosphate.
    Type: Application
    Filed: July 1, 2019
    Publication date: February 27, 2020
    Inventors: Sukalyan Dutta, Bryant J. Pudil, Krishnaraja Nellikunje, Christopher M. Hobot, Kanjimpuredathil Muralikrishna Menon
  • Publication number: 20200054807
    Abstract: The invention relates to devices, systems, and methods for preforming a precision dialysis therapy session based on an analysis of an effluent from a zirconium phosphate sorbent module during an ammonium removal process. The settings for the precision dialysis therapy session can be obtained by estimating a patient's physiological state, such as BUN level, based on the analysis of the effluent for a particular sorbent module linked to a particular patient.
    Type: Application
    Filed: June 10, 2019
    Publication date: February 20, 2020
    Inventors: Bryant J. Pudil, Christopher M. Hobot, Martin T. Gerber
  • Patent number: 10561776
    Abstract: A portable dialysis cabinet for use in dialysis. The portable dialysis cabinet can have a size and weight that facilitates easy movement of the cabinet from one location to another with relative ease. The portable dialysis cabinet can have additional features necessary to facilitate portability, such as wheels and a handle. In general, the portable dialysis cabinet can contain all the necessary components for performing a dialysis session.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: February 18, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Thomas E. Meyer, David B. Lura, Bryant J. Pudil, Martin T. Gerber
  • Publication number: 20200038573
    Abstract: Parallel modules for in-line recharging of sorbent materials using alternate duty cycles for a sorbent cartridge. The sorbent cartridge can have two or more modules contained therein having connectors connecting each of the modules. One or more of the modules can be reusable and the sorbent materials therein can be recharged.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Bryant J. Pudil, Martin T. Gerber, David B. Lura, Thomas E. Meyer
  • Publication number: 20200029868
    Abstract: The invention relates to devices, systems, and methods for estimating a patient BUN level prior to a dialysis session based on data received when introducing an ammonium removal solution through a zirconium phosphate sorbent module. The systems and methods can introduce an ammonia removal solution and determine an ammonia content of the ammonium removal solution effluent to estimate the patient pre-dialysis BUN level.
    Type: Application
    Filed: April 1, 2019
    Publication date: January 30, 2020
    Inventors: Bryant J. Pudil, Christopher M. Hobot, Martin T. Gerber
  • Patent number: 10543052
    Abstract: A portable dialysis cabinet for use in dialysis. The portable dialysis cabinet can have a size and weight that facilitates easy movement of the cabinet from one location to another with relative ease. The portable dialysis cabinet can have additional features necessary to facilitate portability, such as wheels and a handle. In general, the portable dialysis cabinet can contain all the necessary components for performing a dialysis session.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 28, 2020
    Assignee: Medtronic, Inc.
    Inventors: Thomas E. Meyer, David B. Lura, Bryant J. Pudil, Martin T. Gerber
  • Patent number: 10537875
    Abstract: The invention relates to devices, systems, and methods for recharging zirconium phosphate and/or zirconium oxide in reusable sorbent modules. The devices, systems, and methods provide for precision recharging of the zirconium phosphate and/or zirconium oxide to avoid the need of excess recharge solutions. The devices systems and methods also provide for calculation of the volumes of recharge solution needed for fully recharging the zirconium phosphate and zirconium oxide modules.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 21, 2020
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Christopher M. Hobot, Martin T. Gerber
  • Patent number: 10532142
    Abstract: A sorbent based monitoring system for measuring the solute concentration of at least one component of a fluid. The system has a sorbent regeneration system for regeneration of the fluid and has a sorbent cartridge that has at least one material layer. The fluid is conveyed through the sorbent cartridge and contacts at least one sensor after having contacted at least one material layer.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: January 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Thomas E. Meyer, David B. Lura, Martin T. Gerber
  • Patent number: 10532141
    Abstract: Systems and methods for controlling fluid movement and volumes of fluid between a subject and a controlled compliant flow path. The controlled compliant flow path has a means for selectively metering in and metering out fluid from the controlled compliant flow path. An extracorporeal flow path is in fluid communication with the controlled compliant flow path across a semi-permeable membrane where the extracorporeal flow path has a first terminal end and a second terminal end.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: January 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Thomas E. Meyer, David B. Lura, Bryant J. Pudil, Martin T. Gerber
  • Patent number: 10478545
    Abstract: Parallel modules for in-line recharging of sorbent materials using alternate duty cycles for a sorbent cartridge. The sorbent cartridge can have two or more modules contained therein having connectors connecting each of the modules. One or more of the modules can be reusable and the sorbent materials therein can be recharged.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: November 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Martin T. Gerber, David B. Lura, Thomas E. Meyer
  • Publication number: 20190224399
    Abstract: The invention relates to devices, systems, and methods for recharging zirconium phosphate. The devices, system, and methods use a patient pre-dialysis BUN level to set one or more recharge parameters for recharging the zirconium phosphate. The devices, systems, and methods allow for precision recharging of the zirconium phosphate based on the patient pre-dialysis BUN level.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Kenneth J. Collier, Christopher M. Hobot, Martin T. Gerber, Bryant J. Pudil
  • Patent number: 10343145
    Abstract: Methods and related apparatuses for sorbent recharging are provided. The methods and related apparatuses for recharging can recharge a specific rechargeable layer or module of a sorbent material such as zirconium phosphate in a sorbent cartridge. The methods and apparatuses include a fluid source containing at least one recharging fluid, wherein the fluid source is fluidly connectable to at least one rechargeable sorbent module for use in sorbent dialysis in a fluid flow path. The methods and apparatuses include passing a single solution through the zirconium phosphate for ion exchanges, resulting in zirconium phosphate to maintain a substantially consistent pH in a dialysate used during dialysis.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 9, 2019
    Assignee: Medtronic, Inc.
    Inventors: Bryant J. Pudil, Martin T. Gerber, Christopher M. Hobot