Patents by Inventor Bryant M. Moore

Bryant M. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11998488
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. An embodiment of the system includes a mode-locked fiber oscillator-based ultra-short pulsed laser capable of producing laser pulses in the range of 1 nJ to 5 ?J at a pulse repetition rate of between 5 MHz and 25 MHz, a resonant optical scanner oscillating at a frequency of 200 Hz and 21000 Hz, a scan-line rotator, a movable XY-san device, a z-scan device, and a controller configured to coordinate with the other components of the system to produce one or more desired incision patterns. The system also includes compact visualization optics for in-process monitoring using a beam-splitter inside the cone of a patient interface used to fixate the patient's eye during surgery. The system can be configured such that eye surgery is performed while the patient is either sitting upright, or lying on his or her back.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: June 4, 2024
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Bryant M. Moore, Charles Vice
  • Patent number: 11779491
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: October 10, 2023
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Bryant M. Moore
  • Publication number: 20220257415
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Application
    Filed: May 6, 2022
    Publication date: August 18, 2022
    Inventors: Hong Fu, Bryant M. Moore
  • Patent number: 11324631
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: May 10, 2022
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Bryant M. Moore
  • Publication number: 20210000649
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. An embodiment of the system includes a mode-locked fiber oscillator-based ultra-short pulsed laser capable of producing laser pulses in the range of 1 nJ to 5 ?J at a pulse repetition rate of between 5 MHz and 25 MHz, a resonant optical scanner oscillating at a frequency of 200 Hz and 21000 Hz, a scan-line rotator, a movable XY-san device, a z-scan device, and a controller configured to coordinate with the other components of the system to produce one or more desired incision patterns. The system also includes compact visualization optics for in-process monitoring using a beam-splitter inside the cone of a patient interface used to fixate the patient's eye during surgery. The system can be configured such that eye surgery is performed while the patient is either sitting upright, or lying on his or her back.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Hong Fu, Bryant M. Moore, Charles Vice
  • Patent number: 10779988
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. An embodiment of the system includes a mode-locked fiber oscillator-based ultra-short pulsed laser capable of producing laser pulses in the range of 1 nJ to 5 ?J at a pulse repetition rate of between 5 MHz and 25 MHz, a resonant optical scanner oscillating at a frequency of 200 Hz and 21000 Hz, a scan-line rotator, a movable XY-scan device, a z-scan device, and a controller configured to coordinate with the other components of the system to produce one or more desired incision patterns. The system also includes compact visualization optics for in-process monitoring using a beam-splitter inside the cone of a patient interface used to fixate the patient's eye during surgery. The system can be configured such that eye surgery is performed while the patient is either sitting upright, or lying on his or her back.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 22, 2020
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Bryant M. Moore, Charles Vice
  • Publication number: 20200222234
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Inventors: Hong Fu, Bryant M. Moore
  • Patent number: 10610411
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: April 7, 2020
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Bryant M. Moore
  • Publication number: 20160374857
    Abstract: A compact system for performing laser ophthalmic surgery is disclosed. An embodiment of the system includes a mode-locked fiber oscillator-based ultra-short pulsed laser capable of producing laser pulses in the range of 1 nJ to 5 ?J at a pulse repetition rate of between 5 MHz and 25 MHz, a resonant optical scanner oscillating at a frequency of 200 Hz and 21000 Hz, a scan-line rotator, a movable XY-scan device, a z-scan device, and a controller configured to coordinate with the other components of the system to produce one or more desired incision patterns. The system also includes compact visualization optics for in-process monitoring using a beam-splitter inside the cone of a patient interface used to fixate the patient's eye during surgery. The system can be configured such that eye surgery is performed while the patient is either sitting upright, or lying on his or her back.
    Type: Application
    Filed: December 16, 2015
    Publication date: December 29, 2016
    Inventors: Hong Fu, Bryant M. Moore, Charles Vice
  • Publication number: 20160235586
    Abstract: Systems and methods for adjusting an angle of incidence of a laser surgery system include a laser source to produce a laser beam and an optical delivery system to output the laser beam pulses to an object at an adjustable incident angle. A first rotator assembly receives the beam from the laser source along a first beam axis. The first rotator assembly rotates around the first beam axis and the first rotator assembly outputs the beam along a second beam axis different from the first beam axis. A second rotator assembly receives the beam from the first rotator assembly along the second beam axis. The second rotator assembly rotates around the second beam axis. The second rotator assembly follows the rotation of the first rotator assembly and the first rotator assembly is independent of the rotation of the second rotator assembly.
    Type: Application
    Filed: December 14, 2015
    Publication date: August 18, 2016
    Inventors: Hong Fu, Bryant M. Moore
  • Patent number: 5830681
    Abstract: Monoclonal antibodies and fragments thereof, with binding specificity for an epitope on the carboxy terminus of prothrombin activation peptide F1.2, which can be used in immunoassays to predict thrombosis by measuring the extent of activation of prothrombin. These monoclonal antibodies are also included in a kit for performing such immunoassays.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: November 3, 1998
    Assignee: Akzo Nobel N.V.
    Inventors: Marcie J. Hursting, Bryan T. Butman, Jerald P. Steiner, Bryant M. Moore, Frederick A. Dombrose