Patents by Inventor Buddy E. McCormick

Buddy E. McCormick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9304102
    Abstract: An amperometric electrochemical sensor configured to be operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gas species and a resulting measurable increase in oxygen ion flux through the cell. The sensor has an electrolyte membrane, a sensing electrode on the electrolyte membrane, and a counter electrode on the electrolyte membrane, wherein the sensing electrode includes at least one molybdate or tungstate compound. An electrochemical sensor system is also provided, along with a method of detecting the concentration of one or more of NOx and NH3 in a gas sample or stream.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 5, 2016
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Lora B. Thrun, Buddy E. McCormick
  • Patent number: 8974657
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 10, 2015
    Assignee: NexTech Materials Ltd.
    Inventors: Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun, Paul H. Matter, Michael J. Day, William J. Dawson, Buddy E. McCormick
  • Publication number: 20130233728
    Abstract: An amperometric electrochemical sensor configured to be operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gas species and a resulting measurable increase in oxygen ion flux through the cell. The sensor has an electrolyte membrane, a sensing electrode on the electrolyte membrane, and a counter electrode on the electrolyte membrane, wherein the sensing electrode includes at least one molybdate or tungstate compound. An electrochemical sensor system is also provided, along with a method of detecting the concentration of one or more of NOx and NH3 in a gas sample or stream.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Inventors: Michael J. Day, Scott L. Schwartz, Lora B. Thrun, Buddy E. McCormick
  • Publication number: 20120055789
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Inventors: Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun, Paul H. Matter, Michael J. Day, William J. Dawson, Buddy E. McCormick
  • Publication number: 20090218220
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.; and a sensing electrode layer comprising a continuous network of a third material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 3, 2009
    Inventors: Paul J. Matter, Matthew M. Seabaugh, Lora B. Thrun, Scott L. Swartz, Michael J. Day, William J. Dawason, Buddy E. McCormick
  • Patent number: 7261833
    Abstract: Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 28, 2007
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick
  • Patent number: 6803138
    Abstract: Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: October 12, 2004
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick
  • Publication number: 20030003237
    Abstract: Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 2, 2003
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick