Patents by Inventor Bum-Suk Lee

Bum-Suk Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11852930
    Abstract: A display device is provided. A display device includes a display panel including a plurality of connecting signal wires which supply different control voltages; a flexible printed circuit board attached to a side surface of the display panel and including a base film and a plurality of lead wires which are disposed on the base film; an anisotropic conductive film disposed between the plurality of connecting signal wires and the plurality of lead wires, and at least one bump wire disposed between adjacent connecting signal wires, the at least one bump wire being not supplied with the different control voltages controlling the display panel.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: December 26, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin Hee Bae, Min Ho Kim, Kyung Ha Moon, Bum Suk Lee, Nak Sung Choi
  • Publication number: 20220149312
    Abstract: A light-emitting element may include a first electrode, a second electrode facing the first electrode, a first hole transport layer disposed above the first electrode, a first electron transport layer disposed between the first hole transport layer and the second electrode. A first light-emitting part and a second light-emitting part that emit different light may be disposed between the first hole transport layer and the first electron transport layer. The first light-emitting part may include a first blue emission layer, a second electron transport layer, a charge generation layer, and a second blue emission layer, and the first blue emission layer may be disposed above the first hole transport layer. At least one of the first electron transport layer and the second electron transport layer may be directly disposed above at least one of the first blue emission layer and the second blue emission layer.
    Type: Application
    Filed: July 13, 2021
    Publication date: May 12, 2022
    Applicant: Samsung Display Co., Ltd.
    Inventors: SEOKJAE LEE, YUNJAE KIM, JUNGKYUN KIM, HYUNGU KIM, BOHUN PARK, JIN WOO PARK, JUNGJIN YANG, BUM SUK LEE, SUNHYE LEE, JAEJIN LEE
  • Publication number: 20220123061
    Abstract: A display device includes a substrate in which first and second pixel areas respectively emitting first and second light respectively having different emission wavelengths from each other are defined, a first electrode on the substrate to overlap the first and second pixel areas, a hole transport region on the first electrode to overlap the first and second pixel areas, first and second organic layers on the hole transport region to respectively overlap the first and second pixel areas, an electron transport region on the first and second organic layers to overlap the first and second pixel areas, and a second electrode on the electron transport region to overlap the first and second pixel areas. The first organic layer includes first emission layers emitting the first light and a first charge generation layer between the first emission layers, and the second organic layer includes a single second emission layer emitting the second light.
    Type: Application
    Filed: June 25, 2021
    Publication date: April 21, 2022
    Inventors: SEOKJAE LEE, YUNJAE KIM, JUNGKYUN KIM, HYUNGU KIM, BOHUN PARK, JIN WOO PARK, JUNGJIN YANG, BUM SUK LEE, SUNHYE LEE, JAEJIN LEE
  • Publication number: 20200400992
    Abstract: A display device is provided. A display device includes a display panel including a plurality of connecting signal wires which supply different control voltages; a flexible printed circuit board attached to a side surface of the display panel and including a base film and a plurality of lead wires which are disposed on the base film; an anisotropic conductive film disposed between the plurality of connecting signal wires and the plurality of lead wires, and at least one bump wire disposed between adjacent connecting signal wires, the at least one bump wire being not supplied with the different control voltages controlling the display panel.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Inventors: Jin Hee BAE, Min Ho KIM, Kyung Ha MOON, Bum Suk LEE, Nak Sung CHOI
  • Patent number: 10522863
    Abstract: This invention relates to an electrolyte solution for a redox flow battery containing an organic active material, in which an organic compound useful as a single active material for a cathode and an anode is dissolved in a water-soluble solvent, and to a redox flow battery using the same. The electrolyte solution of the invention is an aqueous electrolyte solution obtained by dissolving an active material in an aqueous solvent, and is thus very stable due to the low risk of fire or explosion. Furthermore, the organic compound is applied as a single active material to the cathode and the anode, and thus, when the capacity of the battery is decreased due to the permeation of the active material through the separator, the battery capacity can be restored through rebalancing.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: December 31, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-soo Jin, Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shiin, Bum-suk Lee, Se-Kook Park, Cheon Beom Park, Jaeyoung So
  • Patent number: 10439246
    Abstract: This invention relates to an electrode structure including a porous electrode that simultaneously performs the functions both of a bipolar plate and of a felt electrode and has a pattern layer or a mesh layer serving as a flow path on the surface thereof, a method of manufacturing the same, and a redox flow battery stack configuration for decreasing shunt current.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 8, 2019
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Chang-soo Jin, Kyoung-hee Shin, Sun-hwa Yeon, Bum-suk Lee, Sea Couk Park
  • Patent number: 10176932
    Abstract: A method of manufacturing a graphene composite including an ultrasonic-wave pulverization post-treatment process. The method includes radiating a microwave on a mixture of graphite oxide and a conducting agent, dispersing a resultant material, obtained during the radiating the microwave, in a liquid and performing ultrasonic-wave pulverization, and freeze-drying particles subjected to the ultrasonic-wave pulverization. The post-treatment process is added to the method of manufacturing the graphene composite including the reduced graphene oxide using the graphite oxide, thereby manufacturing a graphene composite having improved bindability with spherical activated carbon used to manufacture an active material. Further, the post-treated graphene composite is used to manufacture the active material and the supercapacitor, and accordingly, the active material can be thinly and densely applied to provide a supercapacitor having improved performance.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: January 8, 2019
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shin, Chang-soo Jin, Bum-suk Lee, Se-Kook Park, Dong-Ha Kim, Sang Ho Lee
  • Patent number: 10128511
    Abstract: The present invention relates to a cathode for a metal-air battery, a method for manufacturing the same, and a metal-air battery including the same. The cathode comprises a needle-shaped core including two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome, or a cobalt oxide; and a flake-shaped shell including an oxide containing two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome or a cobalt oxide. As such, the core-shell structure may lead to a reduction in the charge voltage of the metal-air battery as well as the taking of the good capacity characteristics of the transition metal oxide. Further, according to the present invention, the cathode for a metal-air battery may be produced without adding carbon or binder.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: November 13, 2018
    Inventors: Kyu-nam Jung, Jong-won Lee, Kyung-hee Shin, Chang-soo Jin, Bum-suk Lee, Myung-seok Jeon, Jae-deok Jeon, Sun-hwa Yeon, Joon-mok Shim, Jung-hoon Yang
  • Publication number: 20180277876
    Abstract: This invention relates to an electrolyte solution for a redox flow battery containing an organic active material, in which an organic compound useful as a single active material for a cathode and an anode is dissolved in a water-soluble solvent, and to a redox flow battery using the same. The electrolyte solution of the invention is an aqueous electrolyte solution obtained by dissolving an active material in an aqueous solvent, and is thus very stable due to the low risk of fire or explosion. Furthermore, the organic compound is applied as a single active material to the cathode and the anode, and thus, when the capacity of the battery is decreased due to the permeation of the active material through the separator, the battery capacity can be restored through rebalancing.
    Type: Application
    Filed: September 6, 2016
    Publication date: September 27, 2018
    Inventors: Chang-soo Jin, Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shiin, Bum-suk Lee, Se-Kook Park, Cheon Beom Park, Jaeyoung So
  • Publication number: 20170294658
    Abstract: This invention relates to an electrode structure including a porous electrode that simultaneously performs the functions both of a bipolar plate and of a felt electrode and has a pattern layer or a mesh layer serving as a flow path on the surface thereof, a method of manufacturing the same, and a redox flow battery stack configuration for decreasing shunt current.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Chang-soo JIN, Kyoung-hee SHIN, Sun-hwa YEON, Bum-suk LEE, Sea Couk PARK
  • Publication number: 20170271684
    Abstract: The present invention relates to a cathode for a metal-air battery, a method for manufacturing the same, and a metal-air battery including the same. The cathode comprises a needle-shaped core including two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome, or a cobalt oxide; and a flake-shaped shell including an oxide containing two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome or a cobalt oxide. As such, the core-shell structure may lead to a reduction in the charge voltage of the metal-air battery as well as the taking of the good capacity characteristics of the transition metal oxide. Further, according to the present invention, the cathode for a metal-air battery may be produced without adding carbon or binder.
    Type: Application
    Filed: December 5, 2014
    Publication date: September 21, 2017
    Inventors: Kyu-nam JUNG, Jong-won LEE, Kyung-hee SHIN, Chang-soo JIN, Bum-suk LEE, Myung-seok JEON, Jae-deok JEON, Sun-hwa YEON, Joon-mok SHIM, Jung-hoon YANG
  • Patent number: 9738523
    Abstract: Disclosed is a method of preparing a carbide-derived carbon having high ion mobility for use in a lithium battery anode material, a lithium air battery electrode, a supercapacitor electrode, and a flow capacitor electrode, including thermally treating a carbide compound in a vacuum, thus obtaining a vacuum-treated carbide compound; and thermochemically reacting the vacuum-treated carbide compound with a halogen element-containing gas, thus extracting the element other than carbon from the vacuum-treated carbide compound, wherein annealing can be further performed after thermochemical reaction. This carbide-derived carbon has a small pore distribution, dense graphite fringe, and a large lattice spacing and thus high ion mobility, compared to conventional carbide-derived carbon obtained only by thermochemical reaction with a halogen element-containing gas.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: August 22, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Sukeun Yoon, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
  • Patent number: 9653746
    Abstract: A manifold for a redox flow battery capable of effectively suppressing a shunt current has a supply flow pathway and an exhaust flow pathway respectively formed at a left side and a right side of an anode or cathode electrode electrolyte reaction unit so as to include a U-shaped curved portion, and the U-shaped curved portion is formed to be positioned on the upper part of the top or the lower part of the bottom of the first electrode electrolyte reaction unit. When the manifold is applied to a redox flow battery, the supply flow pathway and the exhaust flow pathway having the U-shaped curved portion are formed on the upper part of the top or the lower part of the bottom of the electrode electrolyte reaction unit to prevent an electrolyte existing in the inside of a stack and a pipe from passing through the U-shaped curved portion.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: May 16, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Chang-Soo Jin, Jae-Deok Jeon, Bum-Suk Lee, Joonmok Shim, Kyoung-Hee Shin, Sea-Couk Park, Myung Seok Jeon, Kyu-Nam Jung, Sun-Hwa Yeon, Sukeun Yoon
  • Patent number: 9634329
    Abstract: Disclosed herein is a method of preparing porous graphene from porous graphite, including 1) thermochemically reacting a highly crystalline carbide compound with a halogen element-containing gas to give a porous carbide-derived carbon; 2) treating the carbide-derived carbon with an acid, thus preparing a carbide-derived carbon oxide; and 3) reducing the carbide-derived carbon oxide. An anode mixture for a secondary battery including the graphene and an anode for a secondary battery including the anode mixture are also provided.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: April 25, 2017
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
  • Patent number: 9601694
    Abstract: A donor substrate for a laser transfer includes a base layer, a primer layer disposed on the base layer, a light-to-heat conversion layer disposed on the primer layer, and an intermediate layer disposed on the light-to-heat conversion layer, where the light-to-heat conversion layer includes graphene.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: March 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD
    Inventors: Ji-Young Kwon, Ji-Hwan Yoon, Sang-Woo Pyo, Ha-Jin Song, Byeong-Wook Yoo, Bum-Suk Lee, Ji-Myoung Ye, Yi-Seul Kim
  • Publication number: 20170053749
    Abstract: Disclosed is a method of manufacturing a graphene composite including an ultrasonic-wave pulverization post-treatment process. The method includes radiating a microwave on a mixture of graphite oxide and a conducting agent, dispersing a resultant material, obtained during the radiating the microwave, in a liquid and performing ultrasonic-wave pulverization, and freeze-drying particles subjected to the ultrasonic-wave pulverization. In the present invention, the post-treatment process is added to the method of manufacturing the graphene composite including the reduced graphene oxide using the graphite oxide, thereby manufacturing a graphene composite having improved bindability with spherical activated carbon used to manufacture an active material. Further, the post-treated graphene composite is used to manufacture the active material and the supercapacitor, and accordingly, the active material can be thinly and densely applied to provide a supercapacitor having improved performance.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 23, 2017
    Inventors: Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shin, Chang-soo Jin, Bum-suk Lee, Se-Kook Park, Dong-Ha Kim, Sang Ho Lee
  • Patent number: 9508946
    Abstract: An organic light emitting diode display includes: a substrate; a thin film transistor provided on the substrate; a first electrode connected to the thin film transistor; an organic emission layer provided on the first electrode; an interlayer provided on the organic emission layer; an electron auxiliary layer provided on the interlayer and including an electron injection layer (EIL) and an electron transport layer (ETL); and a second electrode provided on the electron auxiliary layer, wherein the interlayer is made by mixing a material of the electron auxiliary layer.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: November 29, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ha-Jin Song, Sang-Woo Pyo, Byeong-Wook Yoo, Ji-Young Kwon, Bum-Suk Lee, Ji-Myoung Ye, Ji-Hwan Yoon
  • Publication number: 20160204445
    Abstract: The present invention relates to a cathode catalyst for a metal-air battery, a method for manufacturing the same, and a metal-air battery comprising the same. More specifically, the present invention relates to a cathode catalyst for a metal-air battery, a method for manufacturing the same, and a metal-air battery comprising the same having an improved storage capacity for charging/discharging and an increased charge-discharge cycle lifetime. The cathode catalyst is characterized by having a layered perovskite structure, and including lanthanum and nickel oxides. The cathode catalyst including the layered perovskite is used for manufacturing a cathode for a metal-air battery, and a metal-air battery is provided using the same. As a result, the charge-discharge polarisation of the metal-air battery is decreased, the storage capacity is increased, and the charge-discharge cycle lifetime can be improved.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Inventors: Kyu-nam JUNG, Jong-won LEE, Kyung-hee SHIN, Chang-soo JIN, Bum-suk LEE, Myung-seok JEON, Jae-deok JEON, Sun-hwa YEON, Joon-mok SHIM, Jung-hoon YANG, Jong-hyuk JUNG
  • Patent number: 9391121
    Abstract: An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes red, green, and blue pixels. Each pixel includes a pixel electrode, a hole auxiliary layer formed over the pixel electrode, and an organic emission layer formed over the hole auxiliary layer. Each pixel also includes an electron auxiliary layer formed over the organic emission layer, and a common electrode formed over the electron auxiliary layer. Each of the red and green pixels further includes a host layer formed between the hole auxiliary layer and the organic emission layer and a resonance layer formed between the host layer and the organic emission layer.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 12, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Bum Suk Lee, Ha Jin Song, Ji Hwan Yoon, Ji Young Kwon, Byeong Wook Yoo, Ji Myoung Ye
  • Publication number: 20160130146
    Abstract: Disclosed is a method of preparing a carbide-derived carbon having high ion mobility for use in a lithium battery anode material, a lithium air battery electrode, a supercapacitor electrode, and a flow capacitor electrode, including thermally treating a carbide compound in a vacuum, thus obtaining a vacuum-treated carbide compound; and thermochemically reacting the vacuum-treated carbide compound with a halogen element-containing gas, thus extracting the element other than carbon from the vacuum-treated carbide compound, wherein annealing can be further performed after thermochemical reaction. This carbide-derived carbon has a small pore distribution, dense graphite fringe, and a large lattice spacing and thus high ion mobility, compared to conventional carbide-derived carbon obtained only by thermochemical reaction with a halogen element-containing gas.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 12, 2016
    Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Sukeun Yoon, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn