Patents by Inventor Burcin Temel

Burcin Temel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11319284
    Abstract: In a process for the synthesis of a nitrile by endothermic catalyzed reaction of ammonia with a hydrocarbon using heating obtained by passing an alternating current through a metallic coil, the endothermic reaction between ammonia and the hydrocarbon takes place in a reactor with direct inductive heating in the reaction zone. The heating is extremely fast, which makes the reaction practically instantaneous.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 3, 2022
    Assignee: HALDOR TOPSØE A/S
    Inventors: Poul Erik Højlund Nielsen, Burcin Temel McKenna, John Bøgild Hansen, Rasmus Munksgård Nielsen
  • Patent number: 10987646
    Abstract: A reactor system for dehydrogenation of alkanes in a given temperature range upon bringing a reactant stream including alkanes into contact with a catalytic mixture. The reactor system includes a reactor unit arranged to accommodate the catalytic mixture, where the catalytic mixture includes catalyst particles and a ferromagnetic material. The catalyst particles are arranged to catalyze the dehydrogenation of alkanes. The ferromagnetic material is ferromagnetic at least at temperatures up to an upper limit of the given temperature range. The reactor system moreover includes an induction coil arranged to be powered by a power source supplying alternating current and being positioned so as to generate an alternating magnetic field within the reactor unit upon energization by the power source, whereby the catalytic mixture is heated to a temperature within the temperature range by means of the alternating magnetic field. Also, a catalytic mixture and a method of dehydrogenating alkanes.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: April 27, 2021
    Assignee: HALDOR TOPSØE A/S
    Inventors: Poul Erik Højlund Nielsen, Rasmus Munksgård Nielsen, John Bøgild Hansen, Burcin Temel McKenna
  • Patent number: 10710057
    Abstract: The invention relates to a catalyst material comprising a support, a first metal and a second metal on said support. The first and second metals are in the form of a chemical compound. The first metal is Fe, Co or Ni, and the second metal is selected from the group consisting of Sn, Zn and In. The invention also relates to a process for the preparation of hydrogen cyanide (HCN) from methane (CH4) and ammonia (NH3), wherein the methane and ammonia are contacted with a catalyst according to the invention.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: July 14, 2020
    Assignee: Haldor Topsoe A/S
    Inventors: Burcin Temel McKenna, Poul Erik Højlund Nielsen
  • Publication number: 20190144376
    Abstract: In a process for the synthesis of a nitrile by endothermic catalyzed reaction of ammonia with a hydrocarbon using heating obtained by passing an alternating current through a metallic coil, the endothermic reaction between ammonia and the hydrocarbon takes place in a reactor with direct inductive heating in the reaction zone. The heating is extremely fast, which makes the reaction practically instantaneous.
    Type: Application
    Filed: April 24, 2017
    Publication date: May 16, 2019
    Applicant: HALDOR TOPSØE A/S
    Inventors: Poul Erik HØJLUND NIELSEN, Burcin TEMEL MCKENNA, John Bøgild HANSEN, Rasmus Munksgård NIELSEN
  • Publication number: 20190091664
    Abstract: The invention relates to a catalyst material comprising a support, a first metal and a second metal on said support. The first and second metals are in the form of a chemical compound. The first metal is Fe, Co or Ni, and the second metal is selected from the group consisting of Sn, Zn and In. The invention also relates to a process for the preparation of hydrogen cyanide (HCN) from methane (CH4) and ammonia (NH3), wherein the methane and ammonia are contacted with a catalyst according to the invention.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Burcin Temel McKenna, Poul Erik Højlund Nielsen
  • Publication number: 20180311630
    Abstract: A reactor system for dehydrogenation of alkanes in a given temperature range upon bringing a reactant stream including alkanes into contact with a catalytic mixture. The reactor system includes a reactor unit arranged to accommodate the catalytic mixture, where the catalytic mixture includes catalyst particles and a ferromagnetic material. The catalyst particles are arranged to catalyze the dehydrogenation of alkanes. The ferromagnetic material is ferromagnetic at least at temperatures up to an upper limit of the given temperature range. The reactor system moreover includes an induction coil arranged to be powered by a power source supplying alternating current and being positioned so as to generate an alternating magnetic field within the reactor unit upon energization by the power source, whereby the catalytic mixture is heated to a temperature within the temperature range by means of the alternating magnetic field. Also, a catalytic mixture and a method of dehydrogenating alkanes.
    Type: Application
    Filed: October 24, 2016
    Publication date: November 1, 2018
    Applicant: HALDOR TOPSØE A/S
    Inventors: Poul Erik HØJLUND NIELSEN, Rasmus Munksgård NIELSEN, John Bøgild HANSEN, Burcin TEMEL MCKENNA
  • Publication number: 20180244592
    Abstract: A reactor system for dehydrogenation of ethylbenzene to styrene in a given temperature range T upon bringing a reactant stream including ethylbenzene into contact with a catalytic mixture. The reactor system includes a reactor unit arranged to accommodate the catalytic mixture, the catalytic mixture including catalyst particles in intimate contact with a ferromagnetic material, where the catalyst particles are arranged to catalyze the dehydrogenation of ethylbenzene to styrene. The reactor system moreover includes an induction coil arranged to be powered by a power source supplying alternating current and being positioned so as to generate an alternating magnetic field within the reactor unit upon energization by the power source, whereby the catalytic mixture is heated to a temperature within the temperature range T by means of the alternating magnetic field. Also, a catalytic mixture and a method of dehydrogenating ethylbenzene to styrene.
    Type: Application
    Filed: October 24, 2016
    Publication date: August 30, 2018
    Applicant: HALDOR TOPSØE A/S
    Inventors: Poul Erik HØJLUND NIELSEN, Rasmus Munksgård NIELSEN, John Bøgild HANSEN, Burcin TEMEL MCKENNA
  • Publication number: 20170246617
    Abstract: The invention relates to a catalyst material comprising a support, a first metal and a second metal on said support. The first and second metals are in the form of a chemical compound. The first metal is Fe, Co or Ni, and the second metal is selected from the group consisting of Sn, Zn and In. The invention also relates to a process for the preparation of hydrogen cyanide (HCN) from methane (CH4) and ammonia (NH3), wherein the methane and ammonia are contacted with a catalyst according to the invention.
    Type: Application
    Filed: October 9, 2015
    Publication date: August 31, 2017
    Applicant: Haldor Topsoe A/S
    Inventors: Burcin Temel McKenna, Poul Erik Høijlund Nielsen
  • Patent number: 8765019
    Abstract: Process for the preparation of synthesis gas from an essentially dry hydrocarbon feedstock (1) comprising olefins, hydrogen and carbon monoxide, the process comprising the steps: (a) selectively hydrogenating the olefins in the hydrocarbon feedstock at a temperature between 60 to 190° C. (2) to obtain a hydrogenated hydrocarbon feedstock comprising hydrogen, carbon monoxide and saturated hydrocarbons (3; (b) adding steam (4) to the hydrogenated hydrocarbon feedstock; (c) performing a water gas shift reaction in the presence of steam on the hydrogenated hydrocarbon feedstock (6) to obtain a shifted, hydrogenated hydrocarbon mixture; (d) converting the shifted, hydrogenated hydrocarbon mixture (8) to obtain a synthesis gas.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: July 1, 2014
    Assignee: Haldor Topsoe A/S
    Inventors: Kim Aasberg-Petersen, Poul Erik Højlund Nielsen, Peter Seier Christensen, Charlotte Stub Nielsen, Burcin Temel
  • Patent number: 8637580
    Abstract: Process for the preparation of ethanol and/or higher alcohols comprising the steps of: (a) providing an alcohol synthesis gas comprising carbon monoxide and hydrogen in a molar ratio of higher than 0.5; (c) adding an amount of methanol and/or higher alcohols to the synthesis gas to obtain a synthesis gas mixture. (d) converting the synthesis gas mixture from step (c) in presence of one or more catalysts catalysing the conversion of the synthesis gas mixture into a ethanol and/or higher alcohols containing product; and (e) withdrawing the product from step (d), wherein the synthesis gas is purified by removing iron and nickel carbonyl compounds prior or after the addition methanol and/or higher alcohols to the synthesis gas and optionally (I) cooling the withdrawn product in step (e); and (g) contacting the cooled product with a hydrogenation catalyst.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 28, 2014
    Assignee: Haldor Topsoe A/S
    Inventors: Poul Erik Højlund Nielsen, Burcin Temel, Pablo Beato
  • Publication number: 20130225879
    Abstract: Process for the preparation of a product alcohol mixture comprising the steps of: (a) providing a synthesis gas comprising carbon monoxide and hydrogen (b) providing an amount of methanol and a second source alcohol Rn—CH2—CH2—OH comprising n+2 carbon atoms (Rn?CnH2n+1, n?O) to the synthesis gas to obtain a selective alcohol synthesis mixture (c) converting the selective synthesis mixture in presence of one or more catalysts catalysing the conversion of the synthesis gas mixture into a product alcohol mixture in which the initially dominating alcohol is a preferred Cn+3 alcohol having the structure Rn—CH(CH3)—CH2—OH (d) withdrawing the product alcohol mixture of step (c).
    Type: Application
    Filed: November 8, 2010
    Publication date: August 29, 2013
    Inventors: Burcin Temel, Poul Erik Højlund Nielsen, Pablo Beato
  • Publication number: 20130123377
    Abstract: Process for the preparation of ethanol and/or higher alcohols comprising the steps of: (a) providing an alcohol synthesis gas comprising carbon monoxide and hydrogen in a molar ratio of higher than 0.5; (c) adding an amount of methanol and/or higher alcohols to the synthesis gas to obtain a synthesis gas mixture. (d) converting the synthesis gas mixture from step (c) in presence of one or more catalysts catalysing the conversion of the synthesis gas mixture into a ethanol and/or higher alcohols containing product; and (e) withdrawing the product from step (d), wherein the synthesis gas is purified by removing iron and nickel carbonyl compounds prior or after the addition methanol and/or higher alcohols to the synthesis gas and optionally (I) cooling the withdrawn product in step (e); and (g) contacting the cooled product with a hydrogenation catalyst.
    Type: Application
    Filed: May 17, 2011
    Publication date: May 16, 2013
    Applicant: HALDOR TOPSOE A/S
    Inventors: Poul Erik Højlund Nielsen, Burcin Temel, Pablo Beato
  • Publication number: 20130082211
    Abstract: Process for the preparation of synthesis gas from an essentially dry hydrocarbon feedstock (1) comprising olefins, hydrogen and carbon monoxide, the process comprising the steps: (a) selectively hydrogenating the olefins in the hydrocarbon feedstock at a temperature between 60 to 190° C. (2) to obtain a hydrogenated hydrocarbon feedstock comprising hydrogen, carbon monoxide and saturated hydrocarbons (3; (b) adding steam (4) to the hydrogenated hydrocarbon feedstock; (c) performing a water gas shift reaction in the presence of steam on the hydrogenated hydrocarbon feedstock (6) to obtain a shifted, hydrogenated hydrocarbon mixture; (d) converting the shifted, hydrogenated hydrocarbon mixture (8) to obtain a synthesis gas.
    Type: Application
    Filed: May 13, 2011
    Publication date: April 4, 2013
    Applicant: HALDOR TOPSOE A/S
    Inventors: Kim Aasberg-Petersen, Poul Erik Højlund Nielsen, Peter Seier Christensen, Charlotte Stub Nielsen, Burcin Temel
  • Patent number: 7825287
    Abstract: High octane C7 hydrocarbons, particularly 2,2,3-trimethylbutane (“triptane”) and 2,2,3-trimethyl-but-1-ene (“triptene”) (collectively “triptyls”) are produced by homologation of a feed comprising dimethyl ether and/or methanol and optionally including one or more aliphatic hydrocarbons in the presence of certain acidic zeolite catalysts. The process can be carried out at temperatures lower than those previously used for conversion of dimethyl ether and/or methanol to higher alkanes, including C7 alkanes, and results in selective production of triptane and/or triptene with relatively little isomerization to or production of other C7 alkanes.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 2, 2010
    Assignee: The Regents of the University of California
    Inventors: John Ahn, Burcin Temel, Enrique Iglesia
  • Publication number: 20090247803
    Abstract: High octane C7 hydrocarbons, particularly 2,2,3-trimethylbutane (“triptane”) and 2,2,3-trimethyl-but-1-ene (“triptene”) (collectively “triptyls”) are produced by homologation of a feed comprising dimethyl ether and/or methanol and optionally including one or more aliphatic hydrocarbons in the presence of certain acidic zeolite catalysts. The process can be carried out at temperatures lower than those previously used for conversion of dimethyl ether and/or methanol to higher alkanes, including C7 alkanes, and results in selective production of triptane and/or triptene with relatively little isomerization to or production of other C7 alkanes.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: The Regents of the University of California
    Inventors: John Ahn, Burcin Temel, Enrique Iglesia