Patents by Inventor Burkhard E. Wagner

Burkhard E. Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10793654
    Abstract: Methods of preparing a polymerization catalyst component is provided, in which a magnesium component, a Lewis acid solubilizing component, a titanium compound, optionally a transition metal compound different than the titanium compound, and typically an inert filler are combined in a slurrying agent and spray-dried to produce a catalyst precursor in the form of a substantially spherical and porous solid particle. The methods and catalysts of this disclosure can provide ethylene homopolymer and copolymer resins having a high molecular weight tail and a broadened molecular weight distribution as compared to more traditional Ziegler-Natta catalysts.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: October 6, 2020
    Assignee: Union Carbide Corporation
    Inventors: Burkhard E. Wagner, Robert C. Job, Ann M. Schoeb-Wolters, Robert J. Jorgensen
  • Patent number: 10787553
    Abstract: A polyethylene composition comprising a granular polyethylene resin characterized by a resin solid density of from 0.91 to 0.97 g/cm3, a ratio of intraparticle void volume to interparticle void volume of from 0.33 to 0.67, and a total resin porosity, ?total, of equal to or greater than 0.45 is provided. Further provided are articles made from the polyethylene composition.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: September 29, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: William J. Michie, Jr., Dale A. Wright, Robert J. Jorgensen, Carl F. Baker, Burkhard E. Wagner, Joe B. Garrett, Jr., Matthew H. Mills
  • Patent number: 10513571
    Abstract: Methods of preparing a polymerization catalyst component is provided, in which a magnesium component, a Lewis acid solubilizing component, a titanium compound, optionally a transition metal compound different than the titanium compound, and typically an inert filler are combined in a slurrying agent and spray-dried to produce a catalyst precursor in the form of a substantially spherical and porous solid particle. The methods and catalysts of this disclosure can provide ethylene homopolymer and copolymer resins having a high molecular weight tail and a broadened molecular weight distribution as compared to more traditional Ziegler-Natta catalysts.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: December 24, 2019
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Burkhard E. Wagner, Robert C. Job, Ann M. Schoeb-Wolters, Robert J. Jorgensen
  • Publication number: 20180334518
    Abstract: Methods of preparing a polymerization catalyst component is provided, in which a magnesium component, a Lewis acid solubilizing component, a titanium compound, optionally a transition metal compound different than the titanium compound, and typically an inert filler are combined in a slurrying agent and spray-dried to produce a catalyst precursor in the form of a substantially spherical and porous solid particle. The methods and catalysts of this disclosure can provide ethylene homopolymer and copolymer resins having a high molecular weight tail and a broadened molecular weight distribution as compared to more traditional Ziegler-Natta catalysts.
    Type: Application
    Filed: July 31, 2018
    Publication date: November 22, 2018
    Inventors: Burkhard E. Wagner, Robert C. Job, Ann M. Schoeb-Wolters, Robert J. Jorgensen
  • Patent number: 9221932
    Abstract: A method for making a support impregnated Ziegler-Natta-type catalyst precursor including at least two transition metals and a support material wherein the resulting catalyst precursor is free-flowing is provided. Also provided is a process for producing a Ziegler-Natta type procatalyst by halogenating the free flowing catalyst precursor. The Ziegler-Natta type procatalyst and the reaction product of at least one monomer in the presence of the Ziegler-Natta type procatalyst and cocatalyst are also provided.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 29, 2015
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner, Cynthia A. Hepburn
  • Patent number: 9175111
    Abstract: The invention provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer, and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer has a density less than, or equal to, 0.955 g/cm3, and wherein the blend has a high load melt index (I21) greater than, or equal to, 15 g/10 min, and wherein the blend has a molecular weight distribution (Mw/Mn) greater than, or equal to, 15. The invention also provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer component has a density less than, or equal to, 0.945 g/cm3, and a melt index (I2) less than, or equal to, 0.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 3, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Mridula (Babli) Kapur, Robert J. Jorgensen, Burkhard E. Wagner, William J. Michie, Jr.
  • Patent number: 9133287
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 15, 2015
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Publication number: 20150183906
    Abstract: Methods of preparing a polymerization catalyst component is provided, in which a magnesium component, a Lewis acid solubilizing component, a titanium compound, optionally a transition metal compound different than the titanium compound, and typically an inert filler are combined in a slurrying agent and spray-dried to produce a catalyst precursor in the form of a substantially spherical and porous solid particle. The methods and catalysts of this disclosure can provide ethylene homopolymer and copolymer resins having a high molecular weight tail and a broadened molecular weight distribution as compared to more traditional Ziegler-Natta catalysts.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Burkhard E. Wagner, Robert C. Job, Ann M. Schoeb-Wolters, Robert J. Jorgensen
  • Publication number: 20150099077
    Abstract: A polyethylene composition comprising a granular polyethylene resin characterized by a resin solid density of from 0.91 to 0.97 g/cm3, a ratio of intraparticle void volume to interparticle void volume of from 0.33 to 0.67, and a total resin porosity, ?total, of equal to or greater than 0.45 is provided.
    Type: Application
    Filed: November 28, 2012
    Publication date: April 9, 2015
    Applicant: Dow Global Technololgies LLC
    Inventors: William J. Michie, JR., Dale A. Wright, Robert J. Jorgensen, Carl F. Baker, Burkhard E. Wagner, Joe B. Garrett, Matthew H. Mills
  • Patent number: 8916649
    Abstract: The present invention relates to a process of producing an ethylene polymer composition in multiple stages, of which the first stage is preferably a slurry polymerization stage, in the presence of a catalyst system, comprising: a) a solid catalyst precursor, comprising a transition metal selected from titanium and vanadium; magnesium; a halide, optionally an electron donor; and a solid particulate material comprising an inorganic oxide, and wherein the median particle diameter, D50, of the solid catalyst precursor, based upon the total volume of solid catalyst precursor, is from 1 to 13 micrometers; and b) an organoaluminium compound.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 23, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick J. C. Schouterden, Ruddy A. J. Nicasy, Sarat Munjal, Robert J. Jorgesen, Burkhard E. Wagner
  • Patent number: 8809220
    Abstract: A process for making a Ziegler-Natta-type catalyst precursor including contacting a Group 4 metal compound with one or more Titanium compounds selected from the group of TiCl3 (Al-activated or hydrogen-reduced), and Ti(OR)4 where R is ethyl, isopropyl or butyl in the presence of an alcohol solution having at least one C2-C4 alcohol and at least one of MgCl2 and magnesium compounds which form MgCl2 in the presence of the alcohol solution to form a catalyst precursor solution is provided. Also provided are catalysts made from the precursors produced by the process. Also provided are polymers made using the catalysts.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 19, 2014
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner
  • Publication number: 20120214956
    Abstract: The present invention relates to a process of producing an ethylene polymer composition in multiple stages, of which the first stage is preferably a slurry polymerization stage, in the presence of a catalyst system, comprising: a) a solid catalyst precursor, comprising a transition metal selected from titanium and vanadium; magnesium; a halide, optionally an electron donor; and a solid particulate material comprising an inorganic oxide, and wherein the median particle diameter, D50, of the solid catalyst precursor, based upon the total volume of solid catalyst precursor, is from 1 to 13 micrometers; and b) an organoaluminium compound.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 23, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Patrick J.C. Schouterden, Ruddy Nicasy, Sarat Munjal, Burkhard E. Wagner, Robert J. Jorgensen
  • Publication number: 20120178888
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Patent number: 8202936
    Abstract: The present invention relates to a process of producing an ethylene polymer composition in multiple stages of which the first stage is a slurry polymerization stage, in the presence of a catalyst system comprising a) a solid catalyst precursor comprising a transition metal selected from titanium and vanadium; magnesium, a halide, optionally an electron donor, and a solid particulate material comprising an inorganic oxide, wherein the median particle diameter of the solid catalyst precursor based upon the total volume of solid catalyst precursor, D50, is from 1 to 13 micrometers; and b) an organoaluminium compound.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: June 19, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick J. C. Schouterden, Ruddy Nicasy, Sarat Munjal, Burkhard E. Wagner, Robert J. Jorgensen
  • Patent number: 8173569
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 8, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Publication number: 20120053312
    Abstract: A method for making a support impregnated Ziegler-Natta-type catalyst precursor including at least two transition metals and a support material wherein the resulting catalyst precursor is free-flowing is provided. Also provided is a process for producing a Ziegler-Natta type procatalyst by halogenating the free flowing catalyst precursor. The Ziegler-Natta type procatalyst and the reaction product of at least one monomer in the presence of the Ziegler-Natta type procatalyst and cocatalyst are also provided.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner, Cynthia A. Hepburn
  • Publication number: 20110251361
    Abstract: A process for making a Ziegler-Natta-type catalyst precursor including contacting a Group 4 metal compound with one or more Titanium compounds selected from the group of TiCl3 (Al-activated or hydrogen-reduced), and Ti(OR)4 where R is ethyl, isopropyl or butyl in the presence of an alcohol solution having at least one C2-C4 alcohol and at least one of MgCl2 and magnesium compounds which form MgCl2 in the presence of the alcohol solution to form a catalyst precursor solution is provided. Also provided are catalysts made from the precursors produced by the process. Also provided are polymers made using the catalysts.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 13, 2011
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner
  • Publication number: 20110166305
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Application
    Filed: August 9, 2005
    Publication date: July 7, 2011
    Inventors: Robert J. Jorgensen, Thomas E. Spriggs, Michael D. Turner, Burkhard E. Wagner, Daniel J. Lacks
  • Publication number: 20110130271
    Abstract: Methods of preparing a polymerization catalyst component is provided, in which a magnesium component, a Lewis acid solubilizing component, a titanium compound, optionally a transition metal compound different than the titanium compound, and typically an inert filler are combined in a slurrying agent and spray-dried to produce a catalyst precursor in the form of a substantially spherical and porous solid particle. The methods and catalysts of this disclosure can provide ethylene homopolymer and copolymer resins having a high molecular weight tail and a broadened molecular weight distribution as compared to more traditional Ziegler-Natta catalysts.
    Type: Application
    Filed: August 6, 2009
    Publication date: June 2, 2011
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Burkhard E. Wagner, Robert C. Job, Ann M. Schoeb-Wolters, Robert J. Jorgensen
  • Publication number: 20110034635
    Abstract: The invention provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer, and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer has a density less than, or equal to, 0.955 g/cm3, and wherein the blend has a high load melt index (I21) greater than, or equal to, 15 g/10 min, and wherein the blend has a molecular weight distribution (Mw/Mn) greater than, or equal to, 15. The invention also provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer component has a density less than, or equal to, 0.945 g/cm3, and a melt index (I2) less than, or equal to, 0.
    Type: Application
    Filed: December 18, 2008
    Publication date: February 10, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Mridula Kapur, Robert J. Jorgensen, Burkhard E. Wagner, William J. Michie, JR.