Patents by Inventor Burt Jay Beardsley

Burt Jay Beardsley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7936455
    Abstract: A spectrograph including a primary mirror, a secondary mirror, and a tertiary mirror forming a TMA having a common vertex axis. The spectrograph also may include a collimating mirror, a diffraction grating, and a dispersive prism. The collimating mirror and an entrance aperture form an interchangeable module. Radiation received through the entrance aperture is reflected in a collimated pattern towards an aperture stop. The diffraction grating, located between the collimating mirror and prism, diffracts radiation passed through the aperture stop into multiple beams directed onto the prism. A flat mirror, located to one side of the vertex axis. receives and reflects the multiple beams exiting the prism onto the primary mirror, where they are reflected onto the secondary mirror. The secondary mirror reflects the beams to the tertiary mirror where they are reflected onto an image plane located on the other side of the vertex axis.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 3, 2011
    Inventors: Burt Jay Beardsley, Wendy Lynn Beardsley
  • Patent number: 7936454
    Abstract: A portable spectrograph including a primary mirror, a secondary mirror, and a tertiary mirror forming a TMA having a common vertex axis, a diffraction grating, and a dispersive prism, where the portable spectrograph can detect wavelengths between 150 nm and 1.1 ?m. The portable spectrograph also may include a collimating mirror and an entrance aperture, which form an interchangeable module. Radiation received through the entrance aperture is reflected in a collimated pattern towards an aperture stop. The diffraction grating, located between the collimating mirror and prism, diffracts radiation passed through the aperture stop into multiple beams directed onto the prism. A flat mirror, located to one side of the vertex axis receives and reflects the multiple beams exiting the prism onto the primary mirror, where they are reflected onto the secondary mirror. The secondary mirror reflects the beams to the tertiary mirror where they are reflected onto an image plane located on the other side of the vertex axis.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: May 3, 2011
    Inventors: Burt Jay Beardsley, Wendy Lynn Beardsley
  • Publication number: 20090316146
    Abstract: A portable spectrograph including a primary mirror, a secondary mirror, and a tertiary mirror forming a TMA having a common vertex axis, a diffraction grating, and a dispersive prism, where the portable spectrograph can detect wavelengths between 150 nm and 1.1 ?m. The portable spectrograph also may include a collimating mirror and an entrance aperture, which form an interchangeable module. Radiation received through the entrance aperture is reflected in a collimated pattern towards an aperture stop. The diffraction grating, located between the collimating mirror and prism, diffracts radiation passed through the aperture stop into multiple beams directed onto the prism. A flat mirror, located to one side of the vertex axis receives and reflects the multiple beams exiting the prism onto the primary mirror, where they are reflected onto the secondary mirror. The secondary mirror reflects the beams to the tertiary mirror where they are reflected onto an image plane located on the other side of the vertex axis.
    Type: Application
    Filed: August 31, 2009
    Publication date: December 24, 2009
    Inventors: BURT JAY BEARDSLEY, WENDY LYNN BEARDSLEY
  • Publication number: 20090091753
    Abstract: A spectrograph including a primary mirror, a secondary mirror, and a tertiary mirror forming a TMA having a common vertex axis. The spectrograph also may include a collimating mirror, a diffraction grating, and a dispersive prism. The collimating mirror and an entrance aperture form an interchangeable module. Radiation received through the entrance aperture is reflected in a collimated pattern towards an aperture stop. The diffraction grating, located between the collimating mirror and prism, diffracts radiation passed through the aperture stop into multiple beams directed onto the prism. A flat mirror, located to one side of the vertex axis. receives and reflects the multiple beams exiting the prism onto the primary mirror, where they are reflected onto the secondary mirror. The secondary mirror reflects the beams to the tertiary mirror where they are reflected onto an image plane located on the other side of the vertex axis.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 9, 2009
    Inventors: BURT JAY BEARDSLEY, WENDY LYNN BEARDSLEY