Patents by Inventor Byoung-Suhk Kim

Byoung-Suhk Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10983403
    Abstract: A flexible liquid crystal film using a fiber-based foldable transparent electrode and a method of fabricating the same are provided. A flexible liquid crystal film using a fiber-based foldable transparent electrode according to an exemplary embodiment of the present disclosure, the flexible liquid crystal film includes: a pair of fiber-based foldable transparent electrodes in which a nanofiber transparent thin film formed of a polymer and a Nylon-6 nanofiber is coated with a silver (Ag) nanowire; and a dispersed liquid crystal formed by being cured between the pair of fiber-based foldable transparent electrodes.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: April 20, 2021
    Assignee: INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY
    Inventors: Seung Hee Lee, Byoung Suhk Kim, In Chul Kim, Tae Hyung Kim, Chae-Song Kwak
  • Patent number: 10910124
    Abstract: A foldable transparent electrode based on fiber and a manufacturing method thereof are provided. The manufacturing method of a foldable transparent electrode based on fiber according to the exemplary embodiment includes: coating a nylon-6 nanofiber nonwoven fabric with a polymer to prepare a nylon-6 nanofiber transparent thin film, and spin coating the nylon-6 nanofiber transparent thin film with a silver nanowire solution.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: February 2, 2021
    Assignee: INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY
    Inventors: Byoung Suhk Kim, Seung Hee Lee, In Chul Kim
  • Patent number: 10734168
    Abstract: Provided is a cellulose thin film electrode comprising a silver nano dendrite and a method of manufacturing the same. The method of manufacturing a cellulose thin film electrode comprising a silver nano dendrite comprises: forming the cellulose thin film electrode comprising a silver nano dendrite by soaking a reaction metal to which a thin film comprising silver nitrate and cellulose acetate is attached, in a reaction solution; and separating the cellulose thin film electrode from the reaction metal and then removing the reaction metal from the reaction solution.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 4, 2020
    Assignee: INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY
    Inventors: Byoung Suhk Kim, Hak Yong Kim, Tae Hoon Ko, Ji Young Park
  • Publication number: 20200243212
    Abstract: A foldable transparent electrode based on fiber and a manufacturing method thereof are provided. The manufacturing method of a foldable transparent electrode based on fiber according to the exemplary embodiment includes: coating a nylon-6 nanofiber nonwoven fabric with a polymer to prepare a nylon-6 nanofiber transparent thin film, and spin coating the nylon-6 nanofiber transparent thin film with a silver nanowire solution.
    Type: Application
    Filed: November 24, 2017
    Publication date: July 30, 2020
    Inventors: Byoung Suhk KIM, Seung Hee LEE, In Chul KIM
  • Publication number: 20190302508
    Abstract: A flexible liquid crystal film using a fiber-based foldable transparent electrode and a method of fabricating the same are provided. A flexible liquid crystal film using a fiber-based foldable transparent electrode according to an exemplary embodiment of the present disclosure, the flexible liquid crystal film includes: a pair of fiber-based foldable transparent electrodes in which a nanofiber transparent thin film formed of a polymer and a Nylon-6 nanofiber is coated with a silver (Ag) nanowire; and a dispersed liquid crystal formed by being cured between the pair of fiber-based foldable transparent electrodes.
    Type: Application
    Filed: March 21, 2019
    Publication date: October 3, 2019
    Inventors: Seung Hee Lee, Byoung Suhk Kim, In Chul Kim, Tae Hyung Kim, Chae-Song Kwak
  • Publication number: 20180211795
    Abstract: Provided is a cellulose thin film electrode comprising a silver nano dendrite and a method of manufacturing the same. The method of manufacturing a cellulose thin film electrode comprising a silver nano dendrite comprises: forming the cellulose thin film electrode comprising a silver nano dendrite by soaking a reaction metal to which a thin film comprising silver nitrate and cellulose acetate is attached, in a reaction solution; and separating the cellulose thin film electrode from the reaction metal and then removing the reaction metal from the reaction solution.
    Type: Application
    Filed: July 15, 2016
    Publication date: July 26, 2018
    Applicant: Industrial Cooperation Foundation Chonbuk National University
    Inventors: Byoung Suhk KIM, Hak Yong KIM, Tae Hoon KO, Ji Young PARK
  • Patent number: 9177729
    Abstract: The present invention provides a separator and a method for manufacturing the separator. The separator includes a first nanofiber layer (20) which has a lattice shape when viewed from a plan view, a second nanofiber layer (30) which is provided on a first surface of the first nanofiber layer (20) and is thinner than the first nanofiber layer, and a third nanofiber layer (40) which is provided on a second surface of the first nanofiber layer and is thinner than the first nanofiber layer. The thickness of the first nanofiber layer ranges from 7 ?m to 30 ?m. The thickness of each of the second and third nanofiber layers ranges from 1 ?m to 5 ?m. The present invention can provide a separator which has high insulation, high dendrite resistance, high ion conductivity and high mechanical strength.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: November 3, 2015
    Assignees: TOPTEC COMPANY LIMITED, SHINSHU UNIVERSITY
    Inventors: Ick-soo Kim, Byoung-Suhk Kim, Kei Watanabe, Naotaka Kimura, Kyu-oh Kim, Jae-hwan Lee
  • Publication number: 20140004405
    Abstract: The present invention provides a separator and a method for manufacturing the separator. The separator includes a first nanofiber layer (20) which has a lattice shape when viewed from a plan view, a second nanofiber layer (30) which is provided on a first surface of the first nanofiber layer (20) and is thinner than the first nanofiber layer, and a third nanofiber layer (40) which is provided on a second surface of the first nanofiber layer and is thinner than the first nanofiber layer. The thickness of the first nanofiber layer ranges from 7 ?m to 30 ?m. The thickness of each of the second and third nanofiber layers ranges from 1 ?m to 5 ?m. The present invention can provide a separator which has high insulation, high dendrite resistance, high ion conductivity and high mechanical strength.
    Type: Application
    Filed: February 6, 2012
    Publication date: January 2, 2014
    Applicants: TOPTEC COMPANY LIMITED, SHINSHU UNIVERSITY
    Inventors: Ick-soo Kim, Byoung-Suhk Kim, Kei Watanabe, Naotaka Kimura, Kyu-oh Kim, Jae-hwan Lee
  • Patent number: 8333947
    Abstract: A method for manufacturing carbon nanotubes includes the steps of: preparing metal-containing-nanofibers which include nanofibers made of organic polymer and metal which possesses a catalytic function in forming carbon nanotubes; and forming carbon nanotubes which contain metal therein by using the nanofibers as a carbon source, wherein the carbon nanotubes are formed by putting the metal-containing-nanofibers into a heating vessel which has a substance capable of converting electromagnetic energy into heat, and by heating the metal-containing-nanofibers using heat which is generated by the heating vessel when electromagnetic energy is applied to the heating vessel.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 18, 2012
    Assignee: Shinshu University
    Inventors: Kazuchika Ohta, Ick-Soo Kim, Byoung-Suhk Kim, Jongchul Park
  • Patent number: 8202504
    Abstract: A method for manufacturing carbon nanotubes of the present invention includes the steps of: preparing a metal complex which contains at least one metal selected from a group consisting of iron, cobalt and nickel and an organic compound: and forming carbon nanotubes which contain metal therein by using the organic compound as a carbon source, wherein the carbon nanotubes are formed by putting the metal complex into a heating vessel which has a substance capable of converting electromagnetic energy into heat, and by heating the metal complex using heat which is generated by the heating vessel when electromagnetic energy is applied to the heating vessel. As the metal complex used in a method for manufacturing carbon nanotubes of the present invention, nickel stearate or nickel benzoate can be named, for example. According to the method for manufacturing carbon nanotubes of the present invention, it is possible to manufacture carbon nanotubes using an inexpensive heating device within a short time.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 19, 2012
    Assignee: Shinshu University
    Inventors: Kazuchika Ohta, Ick-Soo Kim, Byoung-Suhk Kim, Jongchul Park
  • Publication number: 20120148739
    Abstract: A method for manufacturing metal nanostructure which can manufacture a metal nanostructure which has the structure and properties different from the structure and properties of a conventional material and can be properly used in various applications is provided. The method for manufacturing metal nanostructure includes the steps of: preparing metal-coated organic nanofibers in which surfaces of the organic nanofibers are coated with metal; and preparing a metal nanostructure having the structure where the organic nanofibers are used as a template by removing organic components from the metal-coated organic nanofibers by heating the metal-coated organic nanofibers at a temperature ranging from 250° C. to 600° C.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicants: SHINSHU UNIVERSITY, TOPTEC CO., LTD.
    Inventors: Ick Soo KIM, Jae Hwan LEE, Byoung-Suhk KIM, Kei WATANABE, Naotaka KIMURA, Hae-Rim KIM, Hyun-Sik BANG
  • Patent number: 8192714
    Abstract: A method for manufacturing carbon nanotubes of the present invention includes the steps of: preparing at least one metal selected from a group consisting of iron, cobalt and nickel and an organic compound: and forming carbon nanotubes by using the organic compound as a carbon source, wherein the metal and the organic compound are put into a heating vessel having a substance capable of converting electromagnetic energy into heat, and the organic compound is brought into contact with the metal in a state where the inside of the heating vessel is heated at a temperature of 600° C. to 900° C. by applying the electromagnetic energy to the heating vessel so as to form the carbon nanotubes.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Shinshu University
    Inventors: Kazuchika Ohta, Ick-Soo Kim, Byoung-Suhk Kim, Jongchul Park
  • Publication number: 20100296996
    Abstract: A method for manufacturing carbon nanotubes includes the steps of: preparing metal-containing-nanofibers which include nanofibers made of organic polymer and metal which possesses a catalytic function in forming carbon nanotubes; and forming carbon nanotubes which contain metal therein by using the nanofibers as a carbon source, wherein the carbon nanotubes are formed by putting the metal-containing-nanofibers into a heating vessel which has a substance capable of converting electromagnetic energy into heat, and by heating the metal-containing-nanofibers using heat which is generated by the heating vessel when electromagnetic energy is applied to the heating vessel.
    Type: Application
    Filed: August 3, 2009
    Publication date: November 25, 2010
    Applicants: SHINSHU UNIVERSITY, FINETEX ENE, INC.
    Inventors: Kazuchika OHTA, Ick-Soo KIM, Byoung-Suhk KIM, Jongchul PARK
  • Publication number: 20100196248
    Abstract: A method for manufacturing carbon nanotubes of the present invention includes the steps of: preparing a metal complex which contains at least one metal selected from a group consisting of iron, cobalt and nickel and an organic compound: and forming carbon nanotubes which contain metal therein by using the organic compound as a carbon source, wherein the carbon nanotubes are formed by putting the metal complex into a heating vessel which has a substance capable of converting electromagnetic energy into heat, and by heating the metal complex using heat which is generated by the heating vessel when electromagnetic energy is applied to the heating vessel. As the metal complex used in a method for manufacturing carbon nanotubes of the present invention, nickel stearate or nickel benzoate can be named, for example. According to the method for manufacturing carbon nanotubes of the present invention, it is possible to manufacture carbon nanotubes using an inexpensive heating device within a short time.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Applicants: SHINSHU UNIVERSITY, FINETEX ENE, INC.
    Inventors: Kazuchika OHTA, Ick-Soo KIM, Byoung-Suhk KIM, Jongchul PARK
  • Publication number: 20100196247
    Abstract: A method for manufacturing carbon nanotubes of the present invention includes the steps of: preparing at least one metal selected from a group consisting of iron, cobalt and nickel and an organic compound: and forming carbon nanotubes by using the organic compound as a carbon source, wherein the metal and the organic compound are put into a heating vessel having a substance capable of converting electromagnetic energy into heat, and the organic compound is brought into contact with the metal in a state where the inside of the heating vessel is heated at a temperature of 600° C. to 900° C. by applying the electromagnetic energy to the heating vessel so as to form the carbon nanotubes.
    Type: Application
    Filed: August 3, 2009
    Publication date: August 5, 2010
    Applicants: SHINSHU UNIVERSITY, FINETEX ENE, INC.
    Inventors: Kazuchika OHTA, Ick-Soo KIM, Byoung-Suhk KIM, Jongchul PARK
  • Patent number: 7067606
    Abstract: Amphiphilic telechelics incorporating polyhedraloligosilsesquioxane (POSS) synthesized by direct urethane linkage between the diol end groups of polyethylene glycol (PEG) homopolymers and the monoisocyanate group of POSS macromers. The hydrophobicity of the amphiphilic telechelics can be varied by using PEG homopolymers of increasing MW, providing for control over molecular architecture by hydrophilic/hydrophobic balance. Methods for synthesizing the amphiphilic telechelics and their use as surfactants, thickening agents, additives to plastic such as PMMA?(Plexiglass), epoxyadhesives for improving their properties are also disclosed.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: June 27, 2006
    Assignee: University of Connecticut
    Inventors: Patrick T. Mather, Byoung-Suhk Kim, Qing Ge, Changdeng Liu
  • Publication number: 20040024098
    Abstract: Amphiphilic telechelics incorporating polyhedraloligosilsesquioxane (POSS) synthesized by direct urethane linkage between the diol end groups of polyethylene glycol (PEG) homopolymers and the monoisocyanate group of POSS macromers. The hydrophobicity of the amphiphilic telechelics can be varied by using PEG homopolymers of increasing MW, providing for control over molecular architecture by hydrophilic/hydrophobic balance. Methods for synthesizing the amphiphilic telechelics and their use as surfactants, thickening agents, additives to plastic such as PMMA′(Plexiglass), epoxyadhesives for improving their properties are also disclosed.
    Type: Application
    Filed: July 16, 2003
    Publication date: February 5, 2004
    Inventors: Patrick T. Mather, Byoung-Suhk Kim, Qing Ge, Changdeng Liu