Patents by Inventor Byron Andrew Pritchard, Jr.

Byron Andrew Pritchard, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11702956
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Patent number: 11679898
    Abstract: A method for inspecting and repairing a surface of a component of a gas turbine engine, the method including: inserting an inspection and repair tool into an interior of the gas turbine engine; inspecting the surface of the component with the inspection and repair tool; performing a repair of the surface of the component with the inspection and repair tool from within the interior of the gas turbine engine, the inspection and repair tool remaining within the interior of the gas turbine engine between inspecting the component and performing the repair of the surface of the component.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: June 20, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Todd William Danko, Ambarish Jayant Kulkarni, Margeaux Wallace, Hrishikesh Keshavan, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Michael Dean Fullington, Andrew Crispin Graham, Trevor Owen Hawke, Julian Matthew Foxall, Ahmed M ELKady
  • Patent number: 11649735
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 16, 2023
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 11591928
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Publication number: 20230024295
    Abstract: A system and method of using a tool assembly is provided. The system includes a body, a first camera and a second camera fixed to the body, and a controller. The controller is configured to receive data indicative of images of a reference feature from the first camera, determine data indicative of a first spatial position of the first camera based at least in part on the received data indicative of the images of the reference feature, and determine data indicative of a second spatial position of the second camera based on the first spatial position, a known spatial relationship between the first location and the second location, or both. Further, the controller may be configured to receive data indicative of images of a target feature using the second camera, derive dimensions of the target feature based on the images, and generate a three-dimensional representation of the target feature.
    Type: Application
    Filed: September 10, 2021
    Publication date: January 26, 2023
    Inventors: Mandar Diwakar Godbole, Byron Andrew Pritchard, JR., Kirti Arvind Petkar, Vamshi Krishna Reddy Kommareddy, Sandeep Kumar, Andrew Crispin Graham
  • Patent number: 11555413
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Byron Andrew Pritchard, Jr., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11549382
    Abstract: A coated component of a gas turbine engine includes a substrate defining a surface, a thermal barrier coating deposited on the surface of the substrate, a region of the component where the thermal barrier coating has spalled from the substrate, a layer of environmental contaminant compositions formed on one or more of the thermal barrier coating or the region of the component where the thermal barrier coating has spalled from the substrate in response to an initial exposure of the component to high operating temperatures of the gas turbine engine, and a thermal barrier coating (TBC) restoration coating deposited at least on the region of the component where there thermal barrier coating has spalled from the substrate.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: January 10, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Ambarish Jayant Kulkarni, Margeaux Wallace, Byron Andrew Pritchard, Jr., Almed M. Elkady, Atanu Saha, Mamatha Nagesh, Bernard Patrick Bewlay
  • Patent number: 11541340
    Abstract: A turbine engine having an inducer assembly. The inducer assembly includes a centrifugal separator fluidly coupled to an inducer with an inducer inlet and an inducer outlet. The centrifugal separator includes a body, an angular velocity increaser to form a concentrated-particle stream and a reduced-particle stream, a flow splitter, and an exit conduit fluidly coupled to the body to receive the reduced-particle stream and define a separator outlet.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: January 3, 2023
    Assignee: General Electric Company
    Inventors: Timothy Deryck Stone, Gregory Michael Laskowski, Robert Proctor, Curtis Stover, Robert Francis Manning, Victor Hugo Silva Correia, Jared Peter Buhler, Robert Carl Murray, Corey Bourassa, Byron Andrew Pritchard, Jr., Jonathan Russell Ratzlaff
  • Publication number: 20220389834
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11506077
    Abstract: An inflatable device equipped with a guiding mechanism and methods of installing the inflatable device to form a temporary barrier within a gas turbine engine are provided. In one aspect, an inflatable device includes a backbone and an inflatable bladder connected thereto. The backbone is formed of a flexible and inextensible material. The inflatable bladder is formed of an expandable material. To install the inflatable device within an annular chamber of a gas turbine engine, the backbone is inserted into a first access port of the engine and is moved circumferentially around the annulus of the chamber. The backbone is retrieved through a second access port. The inflatable bladder is moved into position within the chamber by pushing the backbone into the first access port and/or pulling the backbone out of the second access port. When positioned in place, the inflatable bladder is inflated to form an annular seal.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Deepak Trivedi, Ambarish Jayant Kulkarni, Michael Robert Millhaem
  • Patent number: 11415019
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 16, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Publication number: 20220252010
    Abstract: Systems and methods for removing heat are provided. For example, a system comprises a support apparatus and a cooling apparatus, including a suction device for forcing air through a gas turbine engine, disposed on the support apparatus, which is moveable with respect to the engine to position the cooling apparatus in contact with an engine exhaust. A nozzle in operative communication with the suction device may force air through the engine. Further, the support apparatus may comprise a lift device, an angle adjustment mechanism, and a nozzle support element disposed on a longitudinal slide rail for adjusting a height, an angle, and a longitudinal position of the nozzle. A method of removing heat from a gas turbine engine after shutdown comprises positioning a cooling apparatus adjacent an exhaust; sealing the cooling apparatus to the exhaust; and operating a suction device of the cooling apparatus to move air through the engine.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: Michael Robert Millhaem, Byron Andrew Pritchard, JR., Michael Edward Eriksen
  • Publication number: 20220243612
    Abstract: An inflatable device equipped with a guiding mechanism and methods of installing the inflatable device to form a temporary barrier within a gas turbine engine are provided. In one aspect, an inflatable device includes a backbone and an inflatable bladder connected thereto. The backbone is formed of a flexible and inextensible material. The inflatable bladder is formed of an expandable material. To install the inflatable device within an annular chamber of a gas turbine engine, the backbone is inserted into a first access port of the engine and is moved circumferentially around the annulus of the chamber. The backbone is retrieved through a second access port. The inflatable bladder is moved into position within the chamber by pushing the backbone into the first access port and/or pulling the backbone out of the second access port. When positioned in place, the inflatable bladder is inflated to form an annular seal.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Inventors: Byron Andrew Pritchard, JR., Deepak Trivedi, Ambarish Jayant Kulkarni, Michael Robert Millhaem
  • Patent number: 11371425
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang
  • Publication number: 20220135254
    Abstract: A robotic assembly configured to service an engine, wherein the robotic assembly includes an environmental capture device configured to provide information associated with an environment in which the engine is disposed to one or more computing devices, and wherein the one or more computing devices are configured to use the information to inspect the engine before and after repair operations associated with the service to check for repair equipment, or parts thereof, left in the engine after the repair.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Andrew Crispin Graham, David Scott Diwinsky, Byron Andrew Pritchard, JR., Julian Matthew Foxall
  • Publication number: 20220138699
    Abstract: A method of servicing aviation equipment including at least partially-autonomously inspecting components of the equipment using an environmental capture device, wherein at least partially-autonomous inspection includes: capturing information associated with the equipment using the environmental capture device; identifying the components of the equipment using one or more computing devices; determining, by the one or more computing devices, whether each identified component is properly positioned relative to the equipment using reference information; and for components not properly positioned relative to the equipment, determining if there is damage to the component or equipment.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Andrew Crispin Graham, David Scott Diwinsky, Byron Andrew Pritchard, JR., Julian Matthew Foxall
  • Publication number: 20220135006
    Abstract: A computer implemented method for servicing an engine including receiving information including an initial condition profile, CP1, of the engine; forming a workscope associated with a servicing operation of the engine in view of the initial condition profile, CP1; servicing the engine in view of the workscope; determining at least in part an updated condition profile, CP2, of the engine in view of information acquired during the service; and storing the updated condition profile, CP2, for use in a subsequent service operation.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Andrew Crispin Graham, David Scott Diwinsky, Byron Andrew Pritchard, JR.
  • Publication number: 20220136405
    Abstract: A method of detecting damage to a gas turbine engine, the method including observing a thermal response of the engine during a thermal transition occurring when the engine transitions between an elevated temperature and a lesser temperature; determining potential damage to the gas turbine engine based on the observed thermal response of the gas turbine engine; and generating an action in response to the determined potential damage to the gas turbine engine.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Andrew Crispin Graham, David Scott Diwinsky, Byron Andrew Pritchard, JR.
  • Publication number: 20220134562
    Abstract: Systems and methods of servicing engines including a method of servicing an engine, the method including navigating at least a portion of a robotic assembly to a location associated with the engine; applying, from the robotic assembly, a medium to one or more adjustable components of the engine while the engine is at an elevated temperature; waiting a duration of time; and with the robotic assembly, operating on the one or more adjustable components.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Andrew Crispin Graham, David Scott Diwinsky, Byron Andrew Pritchard, JR.
  • Publication number: 20220090537
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Byron Andrew Pritchard, JR., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang