Patents by Inventor Byron Jon Roderick Shulver

Byron Jon Roderick Shulver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11047746
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Patent number: 10782154
    Abstract: An integrated AMR sensor includes a half bridge with two resistors, a Wheatstone bridge with four resistors, or a first Wheatstone bridge with four resistors in an orthogonal configuration, and a second Wheatstone bridge with four resistors in an orthogonal configuration, oriented at 45 degrees with respect to the first Wheatstone bridge. Each resistor includes first magnetoresistive segments with current flow directions oriented at a first tilt angle with respect to a reference direction of the resistor, and second magnetoresistive segments with current flow directions oriented at a second tilt angle with respect to the reference direction. The tilt angles are selected to advantageously cancel angular errors due to shape anisotropies of the magnetoresistive segments. In another implementation, the disclosed system/method include a method for identifying tilt angles which cancel angular errors due to shape anisotropies of the magnetoresistive segments.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 22, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Byron Jon Roderick Shulver, Dok Won Lee
  • Publication number: 20200240849
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Application
    Filed: April 20, 2020
    Publication date: July 30, 2020
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Patent number: 10663355
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 26, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Patent number: 10534045
    Abstract: A microelectronic device includes a vertical Hall sensor for measuring magnetic fields in two dimensions. In one implementation, the disclosed microelectronic device involves a vertical Hall plate with a cross-shaped upper terminal and a lower terminal which includes a buried layer. The cross-shaped upper terminal has a length-to-width ratio of 5 to 12 where it contacts the vertical Hall plate. The length is measured from one end of one arm of the cross-shaped upper terminal to an opposite end of an opposite arm. The width is an average width of both arms. Hall sense taps are located outside of the cross-shaped upper terminal. Current returns connect to the buried layer.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: January 14, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver, Iouri Mirgorodski
  • Publication number: 20190086484
    Abstract: A microelectronic device includes a vertical Hall sensor for measuring magnetic fields in two dimensions. In one implementation, the disclosed microelectronic device involves a vertical Hall plate with a cross-shaped upper terminal and a lower terminal which includes a buried layer. The cross-shaped upper terminal has a length-to-width ratio of 5 to 12 where it contacts the vertical Hall plate. The length is measured from one end of one arm of the cross-shaped upper terminal to an opposite end of an opposite arm. The width is an average width of both arms. Hall sense taps are located outside of the cross-shaped upper terminal. Current returns connect to the buried layer.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Applicant: Texas Instruments Incorporated
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver, Iouri Mirgorodski
  • Publication number: 20190003900
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Publication number: 20180372511
    Abstract: An integrated AMR sensor includes a half bridge with two resistors, a Wheatstone bridge with four resistors, or a first Wheatstone bridge with four resistors in an orthogonal configuration, and a second Wheatstone bridge with four resistors in an orthogonal configuration, oriented at 45 degrees with respect to the first Wheatstone bridge. Each resistor includes first magnetoresistive segments with current flow directions oriented at a first tilt angle with respect to a reference direction of the resistor, and second magnetoresistive segments with current flow directions oriented at a second tilt angle with respect to the reference direction. The tilt angles are selected to advantageously cancel angular errors due to shape anisotropies of the magnetoresistive segments. In another implementation, the disclosed system/method include a method for identifying tilt angles which cancel angular errors due to shape anisotropies of the magnetoresistive segments.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 27, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Byron Jon Roderick Shulver, Dok Won Lee
  • Patent number: 8836327
    Abstract: The cost and size of an atomic magnetometer are reduced by attaching a vapor cell structure that has a vapor cell cavity to a base die that has a laser light source that outputs light to the vapor cell cavity, and attaching a photo detection die that has a photodiode to the vapor cell structure to detect light from the laser light source that passes through the vapor cell cavity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: William French, Philipp Lindorfer, Peter J. Hopper, Roozbeh Parsa, Andrew James West, Byron Jon Roderick Shulver
  • Publication number: 20130147472
    Abstract: The cost and size of an atomic magnetometer are reduced by attaching a vapor cell structure that has a vapor cell cavity to a base die that has a laser light source that outputs light to the vapor cell cavity, and attaching a photo detection die that has a photodiode to the vapor cell structure to detect light from the laser light source that passes through the vapor cell cavity.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventors: William French, Philipp Lindorfer, Peter J. Hopper, Roozbeh Parsa, Andrew James West, Byron Jon Roderick Shulver