Patents by Inventor Byron Pritchard
Byron Pritchard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12378657Abstract: A reactive phase spray formulation coating is configured to be disposed on the thermal barrier coating of an article. The reactive phase spray formulation coating comprises a base material and a binder material. The base material has a compliance that is higher than a compliance of the binder material, the binder material has a cohesive strength that is greater than a cohesive strength of the base material, the binder material has an adhesive strength that is greater than an adhesive strength of the base material, and the binder material has a surface area of at least ten square-meters per gram that is greater than a surface area of the base material. The binder material is configured to improve a cohesive strength level, an adhesive strength level, and a compliance of the formulation coating of the thermal barrier coating relative to the formulation coating not including the binder material.Type: GrantFiled: January 13, 2022Date of Patent: August 5, 2025Assignee: General Electric CompanyInventors: Hrishikesh Keshavan, Byron Pritchard, Margeaux Wallace, Ambarish Kulkarni, Mehmet Dede, Bernard Patrick Bewlay
-
Patent number: 12215428Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.Type: GrantFiled: February 26, 2024Date of Patent: February 4, 2025Assignee: General Electric CompanyInventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Publication number: 20240247378Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating.Type: ApplicationFiled: February 26, 2024Publication date: July 25, 2024Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Publication number: 20240157382Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.Type: ApplicationFiled: July 13, 2023Publication date: May 16, 2024Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Patent number: 11946146Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.Type: GrantFiled: May 25, 2021Date of Patent: April 2, 2024Assignee: General Electric CompanyInventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Patent number: 11745195Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.Type: GrantFiled: June 28, 2021Date of Patent: September 5, 2023Assignee: General Electric CompanyInventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Patent number: 11534780Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.Type: GrantFiled: August 30, 2019Date of Patent: December 27, 2022Assignee: General Electric CompanyInventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Patent number: 11358171Abstract: An atomizing spray device includes a housing having plural inlets and one or more outlets fluidly coupled with each other by an interior chamber. The inlets include a first inlet shaped to receive a first fluid and a second inlet shaped to receive a slurry of ceramic particles and a second fluid. The interior chamber in the housing is shaped to mix the first fluid received via the first inlet with the slurry received via the second inlet inside the housing to form a mixture in a location between the inlets and the one or more outlets. The interior chamber in the housing also is shaped to direct the mixture formed inside the housing as droplets outside of the housing via the one or more outlets such that, based on a discharged amount of the first fluid in the droplets, the first fluid promotes evaporation of the second fluid as the droplets traverse from the housing toward a surface of a component.Type: GrantFiled: January 30, 2020Date of Patent: June 14, 2022Assignee: General Electric CompanyInventors: Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Byron Pritchard, Krzysztof Lesnicki, Hrishikesh Keshavan, Mehmet Dede, Larry Rosenzweig, Jay Morgan
-
Publication number: 20220136095Abstract: A reactive phase spray formulation coating is configured to be disposed on the thermal barrier coating of an article. The reactive phase spray formulation coating comprises a base material and a binder material. The base material has a compliance that is higher than a compliance of the binder material, the binder material has a cohesive strength that is greater than a cohesive strength of the base material, the binder material has an adhesive strength that is greater than an adhesive strength of the base material, and the binder material has a surface area of at least ten square-meters per gram that is greater than a surface area of the base material. The binder material is configured to improve a cohesive strength level, an adhesive strength level, and a compliance of the formulation coating of the thermal barrier coating relative to the formulation coating not including the binder material.Type: ApplicationFiled: January 13, 2022Publication date: May 5, 2022Inventors: Hrishikesh Keshavan, Byron Pritchard, Margeaux Wallace, Ambarish Kulkarni, Mehmet Dede, Bernard Patrick Bewlay
-
Patent number: 11161128Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.Type: GrantFiled: December 8, 2017Date of Patent: November 2, 2021Assignee: General Electric CompanyInventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Publication number: 20210323008Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.Type: ApplicationFiled: June 28, 2021Publication date: October 21, 2021Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Publication number: 20210277523Abstract: A coating system configured to be applied to a thermal barrier coating of an article includes an infiltration coating configured to be applied to the thermal barrier coating. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The coating system also includes a reactive phase spray formulation coat configured to be applied to the thermal barrier coating.Type: ApplicationFiled: May 25, 2021Publication date: September 9, 2021Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Patent number: 11028486Abstract: A method includes applying an infiltration coating on a thermal barrier coating of an article. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The method also includes applying a reactive phase spray formulation coating on the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.Type: GrantFiled: December 4, 2018Date of Patent: June 8, 2021Assignee: General Electric CompanyInventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Patent number: 10994287Abstract: An atomizing spray device includes a housing having inlets that receive a first fluid and a slurry of ceramic particles and a second fluid. The inlets are fluidly coupled with outlets by an interior chamber that mixes the first fluid with the slurry to form a primary mixture of the first fluid and first atomized droplets of the slurry. A first outlet on a first side of the housing and a second outlet on the first side of the housing are shaped to change the primary mixture to form a secondary mixture of the first fluid and second atomized droplets of the slurry. The first outlet sprays the secondary mixture onto a first surface as a first layer of coating and the second outlet sprays the secondary mixture onto the first surface as a second layer of coating while the housing moves in a direction along the first surface.Type: GrantFiled: April 30, 2018Date of Patent: May 4, 2021Assignee: General Electric CompanyInventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
-
Patent number: 10875054Abstract: Systems and methods that provide or restore a coating to a component are provided. The systems and methods utilized an atomizing spray device. A gas and a slurry that comprises fluid and ceramic particles are supplied to the atomizing spray device. The slurry and gas are discharged from the spray device to form two-phase droplets. The fluid within the droplets evaporates to prevent the fluid from becoming part of the coating as the droplets traverse through the air and prior to impacting the surface of the component.Type: GrantFiled: February 20, 2019Date of Patent: December 29, 2020Assignee: GENERAL ELECTRIC COMPANYInventors: Ambarish Kulkarni, Byron Pritchard, Shankar Sivaramakrishnan, Krzysztof Lesnicki, Hrishikesh Keshavan, Bernard Patrick Bewlay, Mehmet Dede, Larry Rosenzweig, Jay Morgan
-
Patent number: 10792679Abstract: A coating system includes a support fixture sized to be partially inserted into one or more openings of a component and a spray nozzle segment device comprising a housing configured to receive a slurry. The device is disposed radially outward of a central axis of the component and is shaped to extend circumferentially about at least part of the central axis of the component. The housing comprises plural delivery nozzles configured to spray the slurry onto a surface of the component. The device is operably coupled with the support fixture such that the fixture maintains a position of the device within the component when the support fixture is partially inserted into one or more openings of the component.Type: GrantFiled: April 17, 2018Date of Patent: October 6, 2020Assignee: GENERAL ELECTRIC COMPANYInventors: Ambarish Kulkarni, Byron Pritchard, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay
-
Patent number: 10710109Abstract: An atomizing spray nozzle device includes plural inlets that receive different phases of materials of a coating. The device also includes an atomizing zone housing portion fluidly coupled with the inlets and shaped to mix the different phases of the materials into a mixed phase slurry. The device also includes a plenum housing portion fluidly coupled with the atomizing housing portion along the center axis of the device. The plenum housing portion includes an interior plenum that is elongated along the center axis of the device. The plenum is configured to receive the mixed phase slurry from the atomizing zone. The device also includes one or more delivery nozzles fluidly coupled with the plenum. The one or more delivery nozzles provide one or more outlets from which the mixed phase slurry is delivered onto one or more surfaces of a target object as a coating on the target object.Type: GrantFiled: November 14, 2017Date of Patent: July 14, 2020Assignee: General Electric CompanyInventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
-
Publication number: 20200173033Abstract: A method includes applying an infiltration coating on a thermal barrier coating of an article. The infiltration coating infiltrates at least some pores of the thermal barrier coating. The infiltration coating decomposes within the at least some pores of the thermal barrier coating to coat a portion of the at least some pores of the thermal barrier coating. The infiltration coating reduces a porosity of the thermal barrier coating. The method also includes applying a reactive phase spray formulation coating on the thermal barrier coating. The reactive phase spray formulation coating reacts with dust deposits on the thermal barrier coating.Type: ApplicationFiled: December 4, 2018Publication date: June 4, 2020Inventors: Hrishikesh Keshavan, Bernard Patrick Bewlay, Jose Sanchez, Margeaux Wallace, Byron Pritchard, Ambarish Kulkarni
-
Publication number: 20200164392Abstract: An atomizing spray device includes a housing having plural inlets and one or more outlets fluidly coupled with each other by an interior chamber. The inlets include a first inlet shaped to receive a first fluid and a second inlet shaped to receive a slurry of ceramic particles and a second fluid. The interior chamber in the housing is shaped to mix the first fluid received via the first inlet with the slurry received via the second inlet inside the housing to form a mixture in a location between the inlets and the one or more outlets. The interior chamber in the housing also is shaped to direct the mixture formed inside the housing as droplets outside of the housing via the one or more outlets such that, based on a discharged amount of the first fluid in the droplets, the first fluid promotes evaporation of the second fluid as the droplets traverse from the housing toward a surface of a component.Type: ApplicationFiled: January 30, 2020Publication date: May 28, 2020Inventors: Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Byron Pritchard, Krzysztof Lesnicki, Hrishikesh Keshavan, Mehmet Dede, Larry Rosenzweig, Jay Morgan
-
Patent number: 10589300Abstract: An atomizing spray device includes a housing having plural inlets and one or more outlets fluidly coupled with each other by an interior chamber. The inlets include a first inlet shaped to receive a first fluid and a second inlet shaped to receive a slurry of ceramic particles and a second fluid. The interior chamber in the housing is shaped to mix the first fluid received via the first inlet with the slurry received via the second inlet inside the housing to form a mixture in a location between the inlets and the one or more outlets. The interior chamber in the housing also is shaped to direct the mixture formed inside the housing as droplets outside of the housing via the one or more outlets such that, based on a discharged amount of the first fluid in the droplets, the first fluid promotes evaporation of the second fluid as the droplets traverse from the housing toward a surface of a component.Type: GrantFiled: March 16, 2017Date of Patent: March 17, 2020Assignee: GENERAL ELECTRIC COMPANYInventors: Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Byron Pritchard, Krzysztof Lesnicki, Hrishikesh Keshavan, Mehmet Dede, Larry Rosenzweig, Jay Morgan