Patents by Inventor Byron W. Caughey
Byron W. Caughey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180172709Abstract: The present disclosure relates to methods and compositions for the detection of infectious proteins or prions in samples, including the diagnosis of prion related diseases. One embodiment is an ultrasensitive method for detecting PrP-res (PrPSc) that allows the use of recombinant PrP-sen (rPrP-sen) as a substrate for seeded polymerization. A sample is mixed with purified rPrP-sen to make a reaction mix which is incubated to permit aggregation of the rPrP-sen with the PrP-res that may be present in the sample. Any aggregates are intermittently disaggregated by agitation and the reaction allowed to proceed to amplify target substrate. Any rPrP-res(Sc) in the reaction mix is detected to indicate the presence of PrP-res in the original sample. In the QUIC method in, the reaction mixture is shaken intermittently. The surprising speed and efficiency of the method permits the rapid identification and diagnosis of prion disease.Type: ApplicationFiled: July 31, 2017Publication date: June 21, 2018Applicant: THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human ServInventors: Byron W. Caughey, Ryuichiro Atarashi, Roger A. Moore
-
Publication number: 20140302518Abstract: The present disclosure relates to methods and compositions for the detection of infectious proteins or prions in samples, including the diagnosis of prion related diseases. One embodiment is an ultrasensitive method for detecting PrP-res (PrPSc) that allows the use of recombinant PrP-sen (rPrP-sen) as a substrate for seeded polymerization. A sample is mixed with purified rPrP-sen to make a reaction mix which is incubated to permit aggregation of the rPrP-sen with the PrP-res that may be present in the sample. Any aggregates are intermittently disaggregated by agitation and the reaction allowed to proceed to amplify target substrate. Any rPrP-res(Sc) in the reaction mix is detected to indicate the presence of PrP-res in the original sample. In the QUIC method in, the reaction mixture is shaken intermittently. The surprising speed and efficiency of the method permits the rapid identification and diagnosis of prion disease.Type: ApplicationFiled: April 28, 2014Publication date: October 9, 2014Applicant: The United States of America, as Represented by the Secretary, Department of Health and Human ServInventors: Byron W. Caughey, Ryuichiro Atarashi, Roger A. Moore
-
Publication number: 20130288389Abstract: Methods are disclosed for detecting prions and/or prion disease-associated forms of prion protein. These methods provide sensitive and specific identification of prions in both biological and environmental samples. These methods include the use of both immunoprecipitation and an amplification assay that uses shaking in the absence of sonication, such as QuIC(SQ) or RT-QuIC(RTQ). In specific non-limiting examples, the methods include the use of monoclonal antibody 15B3 and/or RT-QuIC(RTQ), and/or a substrate replacement step.Type: ApplicationFiled: January 17, 2012Publication date: October 31, 2013Applicants: Prionics AG, THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and HumanInventors: Christina D. Orru, Byron W. Caughey, Franziska Kuhn, Bjorn Schroder, Alex Raeber
-
Publication number: 20130040319Abstract: The present disclosure relates to methods and compositions for the detection of infectious proteins or prions in samples, including the diagnosis of prion related diseases. One embodiment is an ultrasensitive method for detecting PrP-res (PrPSc) that allows the use of recombinant PrP-sen (rPrP-sen) as a substrate for seeded polymerization. A sample is mixed with purified rPrP-sen to make a reaction mix which is incubated to permit aggregation of the rPrP-sen with the PrP-res that may be present in the sample. Any aggregates are intermittently disaggregated by agitation and the reaction allowed to proceed to amplify target substrate. Any rPrP-res(Sc) in the reaction mix is detected to indicate the presence of PrP-res in the original sample. In the QUIC method in, the reaction mixture is shaken intermittently. The surprising speed and efficiency of the method permits the rapid identification and diagnosis of prion disease.Type: ApplicationFiled: June 5, 2012Publication date: February 14, 2013Inventors: Byron W. Caughey, Ryuichiro Atarashi, Roger A. Moore
-
Patent number: 8216788Abstract: The present disclosure relates to methods and compositions for the detection of infectious proteins or prions in samples, including the diagnosis of prion related diseases. One embodiment is an ultrasensitive method for detecting PrP-res (PrPSc) that allows the use of recombinant PrP-sen (rPrP-sen) as a substrate for seeded polymerization. A sample is mixed with purified rPrP-sen to make a reaction mix which is incubated to permit aggregation of the rPrP-sen with the PrP-res that may be present in the sample. Any aggregates are intermittently disaggregated by agitation (for example by sonication) and the reaction allowed to proceed to amplify target substrate. Any rPrP-res(Sc) in the reaction mix is detected to indicate the presence of PrP-res in the original sample. This assay, which is called rPrP-PMCA, is surprisingly much faster than existing PMCA methods, yet it still retains sufficient sensitivity to detect extremely low levels of PrP-res.Type: GrantFiled: July 21, 2008Date of Patent: July 10, 2012Assignee: The United States of America as represented by the Secretary of the Department of Health and Human ServicesInventors: Byron W. Caughey, Ryuichiro Atarashi, Roger A. Moore
-
Publication number: 20090047696Abstract: The present disclosure relates to methods and compositions for the detection of infectious proteins or prions in samples, including the diagnosis of prion related diseases. One embodiment is an ultrasensitive method for detecting PrP-res (PrPSc) that allows the use of recombinant PrP-sen (rPrP-sen) as a substrate for seeded polymerization. A sample is mixed with purified rPrP-sen to make a reaction mix which is incubated to permit aggregation of the rPrP-sen with the PrP-res that may be present in the sample. Any aggregates are intermittently disaggregated by agitation (for example by sonication) and the reaction allowed to proceed to amplify target substrate. Any rPrP-res(Sc) in the reaction mix is detected to indicate the presence of PrP-res in the original sample. This assay, which is called rPrP-PMCA, is surprisingly much faster than existing PMCA methods, yet it still retains sufficient sensitivity to detect extremely low levels of PrP-res.Type: ApplicationFiled: July 21, 2008Publication date: February 19, 2009Inventors: Byron W. Caughey, Ryuichiro Atarashi, Roger A. Moore, Suzette A. Priola
-
Patent number: 6355610Abstract: Peptides are disclosed that inhibit the conversion of protease sensitive prion protein (PrPsen) to the protease resistant isoform (PrPres). These peptides comprise discrete fragments of prion proteins, and are shown to inhibit the in vitro conversion of PrPsen to PrPres in a cell-free system. Numerous peptides are disclosed that include at least two amino acid residues from the highly amyloidogenic region P113-120 of the PrP protein. None of these peptides conferred protease-resistance to the PrPsen molecules. The presence of residues 119 and 120 from the highly hydrophobic sequence AGAAAAGA (position 113 to 120) produced a particular inhibitory effect. The inhibition occurred with a high degree of specificity (e.g. with an IC50 of less than about 1000 &mgr;M).Type: GrantFiled: March 30, 2001Date of Patent: March 12, 2002Assignee: The United States of America as represented by the Department of Health & Human ServicesInventors: Bruce W. Chesebro, Byron W. Caughey, Joelle Chabry, Suzette Priola
-
Publication number: 20010041790Abstract: Peptides are disclosed that inhibit the conversion of protease sensitive prion protein (PrPsen) to the protease resistant isoform (PrPres). These peptides comprise discrete fragments of prion proteins, and are shown to inhibit the in vitro conversion of PrPsen to PrPres in a cell-free system. Numerous peptides are disclosed that include at least two amino acid residues from the highly amyloidogenic region P113-120 of the PrP protein. None of these peptides conferred protease-resistance to the PrPsen molecules. The presence of residues 119 and 120 from the highly hydrophobic sequence AGAAAAGA (position 113 to 120) produced a particular inhibitory effect. The inhibition occurred with a high degree of specificity (e.g. with an IC50 of less than about 1000 &mgr;M).Type: ApplicationFiled: March 30, 2001Publication date: November 15, 2001Applicant: Government of the U.S. of America, Secretary of the Department of Health and Human ServicesInventors: Bruce W. Chesebro, Byron W. Caughey, Joelle Chabry, Suzette Priola
-
Patent number: 6211149Abstract: Peptides are disclosed that inhibit the conversion of protease sensitive prion protein (PrPsen) to the protease resistant isoform (PrPres). These peptides comprise discrete fragments of prion proteins, and are shown to inhibit the in vitro conversion of PrPsen to PrPres in a cell-free system. Numerous peptides are disclosed that include at least two amino acid residues from the highly amyloidogenic region P113-120 of the PrP protein. None of these peptides conferred protease-resistance to the PrPsen molecules. The presence of residues 119 and 120 from the highly hydrophobic sequence AGAAAAGA (position 113 to 120) produced a particular inhibitory effect. The inhibition occurred with a high degree of specificity (e.g. with an IC50 of less than about 1000 &mgr;M).Type: GrantFiled: August 3, 1998Date of Patent: April 3, 2001Assignee: The United States of America as represented by the Department of Health and Human ServicesInventors: Bruce W. Chesebro, Byron W. Caughey, Joelle Chabry, Suzette Priola