Patents by Inventor Byron Wang

Byron Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12174179
    Abstract: The present invention provides microfluidic pScreen™ devices for quantifying the concentration of DNA fragments in a liquid sample by using magnetic-responsive silica micro-beads and nonmagnetic-responsive silica micro-beads. The devices of the present invention allow for rapid, simple and inexpensive quantification of DNA fragment concentration in a sample. The devices do not require complex instrumentation and can be performed in less than three minutes. Moreover, they are compatible with complex samples including, without limitation, unpurified PCR amplification products, and thus can be expected to seamlessly integrate into various common molecular biology techniques and workflows.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 24, 2024
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka, Juha-Pekka Mattila, Eliseo Salas
  • Publication number: 20200110081
    Abstract: The present invention provides microfluidic pScreen™ devices for quantifying the concentration of DNA fragments in a liquid sample by using magnetic-responsive silica micro-beads and nonmagnetic-responsive silica micro-beads. The devices of the present invention allow for rapid, simple and inexpensive quantification of DNA fragment concentration in a sample. The devices do not require complex instrumentation and can be performed in less than three minutes. Moreover, they are compatible with complex samples including, without limitation, unpurified PCR amplification products, and thus can be expected to seamlessly integrate into various common molecular biology techniques and workflows.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 9, 2020
    Applicant: Carnegie Mellon University
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka, Juha-Pekka Mattila, Eliseo Salas
  • Patent number: 10495634
    Abstract: The present invention provides a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a liquid sample by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 3, 2019
    Assignee: Carnegie Mellon University
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka
  • Publication number: 20170370921
    Abstract: The present invention provides a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a liquid sample by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
    Type: Application
    Filed: August 2, 2017
    Publication date: December 28, 2017
    Applicant: Carnegie Mellon University
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka
  • Patent number: 9753029
    Abstract: The present invention provides a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a liquid sample by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: September 5, 2017
    Assignee: Carnegie Mellon University
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka
  • Patent number: 9569514
    Abstract: Techniques for replicating data in database systems are described. In an example embodiment, a set of changes is received at a destination database, where the set of changes has been applied at a source database and is being replicated from the source database to the destination database. The set of changes is analyzed and it is determined that the set of changes includes two or more of: a subset of row-level changes, a subset of statement-level changes, and a subset of procedure-level changes. A set of dependencies is determined at least between the changes that are included in the subsets of changes. The changes, in the subsets of changes, are assigned to two or more processing elements. The set of changes is applied to the destination database by executing the two or more processing elements in parallel to each other and based on the set of dependencies.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 14, 2017
    Assignee: Oracle International Corporation
    Inventors: Edwina M. Lu, James W. Stamos, Nimar S. Arora, Lik Wong, Haobo Xu, Thuvan Hoang, Byron Wang, Lakshminarayanan Chidambaran
  • Publication number: 20140120633
    Abstract: The present invention provides a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a liquid sample by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka
  • Publication number: 20140040203
    Abstract: Techniques for replicating data in database systems are described. In an example embodiment, a set of changes is received at a destination database, where the set of changes has been applied at a source database and is being replicated from the source database to the destination database. The set of changes is analyzed and it is determined that the set of changes includes two or more of: a subset of row-level changes, a subset of statement-level changes, and a subset of procedure-level changes. A set of dependencies is determined at least between the changes that are included in the subsets of changes. The changes, in the subsets of changes, are assigned to two or more processing elements. The set of changes is applied to the destination database by executing the two or more processing elements in parallel to each other and based on the set of dependencies.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: Oracle International Corporation
    Inventors: Edwina M. Lu, James W. Stamos, Nimar S. Arora, Lik Wong, Haobo Xu, Thuvan Hoang, Byron Wang, Lakshminarayanan Chidambaran
  • Patent number: 8589346
    Abstract: Techniques for replicating data in database systems are described. In an example embodiment, a set of changes is received at a destination database, where the set of changes has been applied at a source database and is being replicated from the source database to the destination database. The set of changes is analyzed and it is determined that the set of changes includes two or more of: a subset of row-level changes, a subset of statement-level changes, and a subset of procedure-level changes. A set of dependencies is determined at least between the changes that are included in the subsets of changes. The changes, in the subsets of changes, are assigned to two or more processing elements. The set of changes is applied to the destination database by executing the two or more processing elements in parallel to each other and based on the set of dependencies.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 19, 2013
    Assignee: Oracle International Corporation
    Inventors: Edwina Lu, James Stamos, Nimar Arora, Lik Wong, Haobo Xu, Thuvan Hoang, Byron Wang, Lakshminaray Chidambaran
  • Publication number: 20120278282
    Abstract: Techniques for replicating data in database systems are described. In an example embodiment, a set of changes is received at a destination database, where the set of changes has been applied at a source database and is being replicated from the source database to the destination database. The set of changes is analyzed and it is determined that the set of changes includes two or more of: a subset of row-level changes, a subset of statement-level changes, and a subset of procedure-level changes. A set of dependencies is determined at least between the changes that are included in the subsets of changes. The changes, in the subsets of changes, are assigned to two or more processing elements. The set of changes is applied to the destination database by executing the two or more processing elements in parallel to each other and based on the set of dependencies.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Inventors: Edwina Lu, James Stamos, Nimar Arora, Lik Wong, Haobo Xu, Thuvan Hoang, Byron Wang, Lakshminaray Chidambaran
  • Patent number: 7925674
    Abstract: Systems, methodologies, media, and other embodiments associated with managing of a distributed database are described. One exemplary system embodiment includes an input logic configured to obtain information associated with a distributed database where the distributed database comprises a plurality of databases. An analysis logic analyzes the information obtained from the distributed database to determine performance information associated with the distributed database and, an output logic can provide information regarding the performance information associated with the distributed database.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Oracle International Corp.
    Inventors: Byron Wang, Nimar Arora, Lik Wong, Jingwei Wu, Jun Yuan
  • Patent number: 7899785
    Abstract: Splitting and merging database object information sharing streams. Streams are also referred to herein as “propagations”. Splitting and merging information sharing streams can be used to improve performance in a information sharing environment when a failed or slow DBS impacts the performance. In one embodiment, an auto split process monitors the progress of applying changes at each node and detects the presence of a failed or a slow node. Once the failed or slow node is identified, the auto split process splits the propagation such that the offending node is sent through a separate propagation. Furthermore, an auto merge process can be started to monitor the newly created separate propagation. At a later point, the new propagation can be merged back into the original stream. For example, if the offending node catches up with other nodes, the auto merge process merges the newly created propagation back to the original propagation.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 1, 2011
    Assignee: Oracle International Corporation
    Inventors: Jun Yuan, Alan Downing, Lik Wong, Nimar Arora, Patricia H. McElroy, Byron Wang, Lei Gao, Anand Lakshminath, Ramkumar Venkatesan
  • Patent number: 7702741
    Abstract: Configuring an n-way multi-master information sharing topology. Adding a new node (e.g., database server) to the information sharing topology can be implemented as follows. Initially, the new node is added as a slave of a particular co-master in the information sharing topology. The objects to replicate are instantiated on the new node by propagating data from the particular co-master to the new node. Furthermore, a capture process is created on the particular co-master to send changes to the objects to the slave. Meanwhile, the co-masters continue to propagate changes to each other. To promote the slave to a master, changes to objects stored at the slave are propagated to each of the co-masters. Furthermore, changes at each of the masters are propagated to the promoted node.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 20, 2010
    Assignee: Oracle International Corporation
    Inventors: Jun Yuan, Alan Downing, Lik Wong, Nimar Arora, Patricia H. McElroy, Byron Wang, Lei Gao, Anand Lakshminath, Ramkumar Venkatesan
  • Patent number: 7668878
    Abstract: A method and apparatus for replicating data between heterogeneous databases is provided. Data is replicated between two heterogeneous databases with the use of a volatile storage queue, enabling the rapid replication of data across databases provided by different vendors or operating on different platforms. According to one embodiment, an in-memory queue is used to queue change operations to be performed on a target data repository. The change operations may be operations that were applied to a source data repository. An apply process retrieves the change operations from in-memory queue and commits the change operations to persistent storage. When the change operations have been committed, the apply process notifies the source platform that the particular change operation has been stored.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 23, 2010
    Assignee: Oracle International Corporation
    Inventors: Nimar Arora, Lik Wong, Neeraj Shadhan, Anand Lakshminath, Edwina Lu, Byron Wang, Thuvan Hoang
  • Publication number: 20090037442
    Abstract: Splitting and merging database object information sharing streams. Streams are also referred to herein as “propagations”. Splitting and merging information sharing streams can be used to improve performance in a information sharing environment when a failed or slow DBS impacts the performance. In one embodiment, an auto split process monitors the progress of applying changes at each node and detects the presence of a failed or a slow node. Once the failed or slow node is identified, the auto split process splits the propagation such that the offending node is sent through a separate propagation. Furthermore, an auto merge process can be started to monitor the newly created separate propagation. At a later point, the new propagation can be merged back into the original stream. For example, if the offending node catches up with other nodes, the auto merge process merges the newly created propagation back to the original propagation.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Jun Yuan, Alan Downing, Lik Wong, Nimar Arora, Patricia H. McElroy, Byron Wang, Lei Gao, Anand Lakshminath, Ramkumar Venkatesan
  • Publication number: 20090037553
    Abstract: Configuring an n-way multi-master information sharing topology. Adding a new node (e.g., database server) to the information sharing topology can be implemented as follows. Initially, the new node is added as a slave of a particular co-master in the information sharing topology. The objects to replicate are instantiated on the new node by propagating data from the particular co-master to the new node. Furthermore, a capture process is created on the particular co-master to send changes to the objects to the slave. Meanwhile, the co-masters continue to propagate changes to each other. To promote the slave to a master, changes to objects stored at the slave are propagated to each of the co-masters. Furthermore, changes at each of the masters are propagated to the promoted node.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Jun Yuan, Alan Downing, Lik Wong, Nimar Arora, Patricia H. McElroy, Byron Wang, Lei Gao, Anand Lakshminath, Ramkumar Venkatesan
  • Publication number: 20080126354
    Abstract: Systems, methodologies, media, and other embodiments associated with managing of a distributed database are described. One exemplary system embodiment includes an input logic configured to obtain information associated with a distributed database where the distributed database comprises a plurality of databases. An analysis logic analyzes the information obtained from the distributed database to determine performance information associated with the distributed database and, an output logic can provide information regarding the performance information associated with the distributed database.
    Type: Application
    Filed: November 27, 2006
    Publication date: May 29, 2008
    Applicant: Oracle International Corporation
    Inventors: Byron Wang, Nimar Arora, Lik Wong, Jingwei Wu, Jun Yuan
  • Publication number: 20080027987
    Abstract: A method and apparatus for replicating data between heterogeneous databases is provided. Data is replicated between two heterogeneous databases with the use of a volatile storage queue, enabling the rapid replication of data across databases provided by different vendors or operating on different platforms. According to one embodiment, an in-memory queue is used to queue change operations to be performed on a target data repository. The change operations may be operations that were applied to a source data repository. An apply process retrieves the change operations from in-memory queue and commits the change operations to persistent storage. When the change operations have been committed, the apply process notifies the source platform that the particular change operation has been stored.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Nimar Arora, Lik Wong, Neeraj Shodhan, Anand Lakshminath, Edwina Lu, Byron Wang, Thuvan Hoang