Patents by Inventor Byung I. Kim

Byung I. Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9140720
    Abstract: A method of measuring properties of a sample, the method comprising: measuring a deflection of a cantilever of a COIFM; measuring a voltage at an actuator contacting the cantilever and configured to counteract the deflection of the cantilever; measuring a voltage at a scan signal source, wherein the scan signal source is communicably coupled to the piezotube and configured to move the piezotube along an X- and a Y-axis; measuring a voltage at a feedback controller, wherein the feedback controller is communicably coupled to the piezotube and configured to move the piezotube along a Z-axis; switching a switch from a first position to a second position; switching the switch to a third position; correlating at least one of the measurements to (i) a repulsive force, and (ii) an attractive force.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: September 22, 2015
    Assignee: BOISE STATE UNIVERSITY
    Inventor: Byung I. Kim
  • Patent number: 9091705
    Abstract: A high-speed atomic force microscope (HSAFM) is disclosed herein. The HSAFM includes a cantilever, a piezotube, an optical detector, a circuit element, and a feedback controller. The cantilever has a probe, and the piezotube is arranged in proximity to the probe. The optical detector is configured to detect deflection of the cantilever, and the circuit element is abutting a first end of the cantilever and is configured to exert a force on the cantilever to resist deflection of the cantilever. The circuit element is communicably connected to the optical detector by a first feedback loop. The feedback controller is communicably connected to the piezotube and configured to modulate the piezotube along the Z-axis towards and away from the probe. And the feedback controller is communicably connected to the optical detector through a second feedback loop.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: July 28, 2015
    Assignee: Boise State University
    Inventor: Byung I. Kim
  • Publication number: 20130298294
    Abstract: A method of measuring properties of a sample, the method comprising: measuring a deflection of a cantilever of a COIFM; measuring a voltage at an actuator contacting the cantilever and configured to counteract the deflection of the cantilever; measuring a voltage at a scan signal source, wherein the scan signal source is communicably coupled to the piezotube and configured to move the piezotube along an X- and a Y-axis; measuring a voltage at a feedback controller, wherein the feedback controller is communicably coupled to the piezotube and configured to move the piezotube along a Z-axis; switching a switch from a first position to a second position; switching the switch to a third position; correlating at least one of the measurements to (i) a repulsive force, and (ii) an attractive force.
    Type: Application
    Filed: July 5, 2013
    Publication date: November 7, 2013
    Inventor: Byung I. Kim
  • Publication number: 20120047610
    Abstract: A method and an apparatus for detecting a normal force component and a friction force component between a probe and a sample substance using an interfacial force microscope is disclosed herein. According to one embodiment, a method of measuring normal and friction forces with an interfacial force microscope includes positioning a sample substance on a piezotube and in proximity to a probe suspended from a cantilever such that a molecular force between the sample substance and the probe causes the cantilever to deflect. The method may include converting the deflection of the cantilever into an electrical signal comprising a normal force and a friction force component, and measuring the normal and friction force components.
    Type: Application
    Filed: October 31, 2011
    Publication date: February 23, 2012
    Inventor: Byung I. Kim