Patents by Inventor Byung-Sung Leo Kwak

Byung-Sung Leo Kwak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9356316
    Abstract: The present invention relates to vacuum-deposited solid state electrolyte layers with high ionic conductivity in electrochemical devices, and methods and tools for fabricating said electrolyte layers. An electrochemical device may comprise solid state electrolytes with incorporated thin layers and/or particles of transition metal oxides, silicon, silicon oxide, or other suitable materials that will induce an increase in ionic conductivity of the electrolyte stack (for example, materials with which lithium is able to intercalate), or mixtures thereof. An improvement in ionic conductivity of the solid state electrolyte is expected which is proportional to the number of incorporated layers or a function of the distribution uniformity and density of the particles within the electrolyte. Embodiments of the present invention are applicable to solid state electrolytes in a broad range of electrochemical devices including thin film batteries, electrochromic devices and ultracapacitors.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: May 31, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Chong Jiang, Byung-Sung Leo Kwak
  • Patent number: 9325007
    Abstract: A magnetic handling assembly for thin-film processing of a substrate, a system and method for assembling and disassembling a shadow mask to cover a top of a workpiece for exposure to a processing condition. The assembly may include a magnetic handling carrier and a shadow mask disposed over, and magnetically coupled to, the magnetic handling carrier to cover a top of a workpiece that is to be disposed between the shadow mask and the magnetic handling carrier when exposed to a processing condition. A system includes a first chamber with a first support to hold the shadow mask, a second support to hold a handling carrier, and an alignment system to align the shadow mask a workpiece to be disposed between the carrier and shadow mask. The first and second supports are moveable relative to each other.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 26, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Byung-Sung Leo Kwak, Stefan Bangert, Ralf Hofmann, Michael Koenig
  • Patent number: 9293706
    Abstract: Methods for encapsulating OLED structures disposed on a substrate using a soft/polymer mask technique are provided. The soft/polymer mask technique can efficiently provide a simple and low cost OLED encapsulation method, as compared to convention hard mask patterning techniques. The soft/polymer mask technique can utilize a single polymer mask to complete the entire encapsulation process with low cost and without alignment issues present when using conventional metal masks. Rather than utilizing a soft/polymer mask, the encapsulation layers may be blanked deposited and then laser ablated such that no masks are utilized during the encapsulation process.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: March 22, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dieter Haas, John M. White, Byung-sung Leo Kwak, Soo Young Choi, Jrjyan Jerry Chen, Jose Manuel Dieguez-Campo
  • Patent number: 9252320
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Patent number: 9252308
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: February 2, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Patent number: 9240508
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 19, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Publication number: 20160002771
    Abstract: Microwave radiation may be applied to electrochemical devices for rapid thermal processing (RTP) (including annealing, crystallizing, densifying, forming, etc.) of individual layers of the electrochemical devices, as well as device stacks, including bulk and thin film batteries and thin film electrochromic devices. A method of manufacturing an electrochemical device may comprise: depositing a layer of the electrochemical device over a substrate; and microwave annealing the layer, wherein the microwave annealing includes selecting annealing conditions with preferential microwave energy absorption in the layer. An apparatus for forming an electrochemical device may comprise: a first system to deposit an electrochemical device layer over a substrate; and a second system to microwave anneal the layer, wherein the second system is configured to provide preferential microwave energy absorption in the device layer.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Inventors: Daoying SONG, Chong Jiang, Byung-Sung Leo Kwak
  • Publication number: 20150364630
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150364629
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150364638
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: March 30, 2015
    Publication date: December 17, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150325862
    Abstract: A method of fabricating a thin film battery may comprise: depositing a first stack of blanket layers on a substrate, the first stack comprising a cathode current collector, a cathode, an electrolyte, an anode and an anode current collector; laser die patterning the first stack to form one or more second stacks, each second stack forming the core of a separate thin film battery; blanket depositing an encapsulation layer over the one or more second stacks; laser patterning the encapsulation layer to open up contact areas to the anode current collectors on each of the one or more second stacks; blanket depositing a metal pad layer over the encapsulation layer and the contact areas; and laser patterning the metal pad layer to electrically isolate the anode current collectors of each of the one or more thin film batteries. For electrically non-conductive substrates, cathode contact areas are opened-up through the substrate.
    Type: Application
    Filed: December 17, 2013
    Publication date: November 12, 2015
    Inventors: Daoying SONG, Chong JIANG, Byung-Sung Leo KWAK
  • Publication number: 20150314417
    Abstract: A system for use in substrate polishing includes a conditioner system for conditioning a surface of a polishing pad and a vacuum system having a vacuum port. The conditioner system includes a conditioner head constructed to receive an abrasive conditioner component. The vacuum system is configured to apply suction through the vacuum port to the surface of the polishing pad in a direction away from the surface to remove material on the surface.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Lizhong Sun, Byung-Sung Leo Kwak
  • Patent number: 9136569
    Abstract: Microwave radiation may be applied to electrochemical devices for rapid thermal processing (RTP) (including annealing, crystallizing, densifying, forming, etc.) of individual layers of the electrochemical devices, as well as device stacks, including bulk and thin film batteries and thin film electrochromic devices. A method of manufacturing an electrochemical device may comprise: depositing a layer of the electrochemical device over a substrate; and microwave annealing the layer, wherein the microwave annealing includes selecting annealing conditions with preferential microwave energy absorption in the layer. An apparatus for forming an electrochemical device may comprise: a first system to deposit an electrochemical device layer over a substrate; and a second system to microwave anneal the layer, wherein the second system is configured to provide preferential microwave energy absorption in the device layer.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 15, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak
  • Patent number: 9116409
    Abstract: The present invention generally relates to electrochemical devices, such as electrochromic (EC) devices and thin film batteries (TFB), and in particular to anodes of electrochemical devices with improved intercalation and/or transport properties. Some embodiments of the invention include anodes, such as nickel oxide, doped with Si, Sn, SiO2 and/or SnO2, which may be in the form of nanoparticles or even substituted atoms/molecules. These nanoparticles/substituted atoms, which have higher lithium intercalation capability, distort the lattice of the anode, improving movement and intercalation of Li ions. In some other embodiments, the anode may be formed of silicon oxide and/or tin oxide, which materials have good transport and intercalation of Li ions.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 25, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lizhong Sun, Byung-Sung Leo Kwak, Jan C. Isidorsson, Chong Jiang
  • Patent number: 8993443
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 31, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Publication number: 20150079481
    Abstract: A method of fabricating an electrochemical device comprising a lithium metal electrode, may comprise: providing a substrate with a lithium metal electrode on the surface thereof; depositing a first layer of dielectric material on the lithium metal electrode, the depositing the first layer being sputtering Li3PO4 in an argon ambient; after the depositing the first layer, inducing and maintaining a nitrogen plasma over the first layer of dielectric material to provide ion bombardment of the first layer for incorporation of nitrogen therein; and after the depositing, the inducing and the maintaining, depositing a second layer of dielectric material on the ion bombarded first layer of dielectric material, the depositing the second layer being sputtering Li3PO4 in a nitrogen-containing ambient. Electrochemical devices may comprise a barrier layer between the lithium metal electrode and the LiPON electrolyte.
    Type: Application
    Filed: January 2, 2014
    Publication date: March 19, 2015
    Inventors: Lizhong SUN, Chong JIANG, Byung-Sung Leo KWAK, Joseph G. GORDON, II
  • Publication number: 20150056744
    Abstract: Selective removal of specified layers of thin film structures and devices, such as solar cells, electrochromics, and thin film batteries, by laser direct patterning is achieved by including heat and light blocking layers in the device/structure stack immediately adjacent to the specified layers which are to be removed by laser ablation. The light blocking layer is a layer of metal that absorbs or reflects a portion of the laser energy penetrating through the dielectric/semiconductor layers and the heat blocking layer is a conductive layer with thermal diffusivity low enough to reduce heat flow into underlying metal layer(s), such that the temperature of the underlying metal layer(s) does not reach the melting temperature, Tm, or in some embodiments does not reach (Tm)/3, of the underlying metal layer(s) during laser direct patterning.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 26, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Daoying Song, Chong Jiang, Byung-Sung Leo Kwak, Joseph G. Gordon, II
  • Patent number: 8894827
    Abstract: A deposition method for electrochromic WOx films involves cyclic deposition of very thin poisoned and metallic tungsten oxide layers to build up a film with a desired general stoichiometry with x in the range of 3>x>2.75. The method may include: charging a deposition chamber with oxygen gas to poison a tungsten metal target; initiating sputtering of the target while reducing the oxygen partial pressure being supplied to the chamber and pumping the chamber; sputtering target for time t1+t2 to form first and second tungsten oxide layers, where the first layer is deposited during time t1 from a poisoned target and the second layer is deposited during time t2 from a metallic target, and where the stoichiometry of the film comprising the first and second layers is a function of t1 and t2; and, repeating until a desired film thickness is achieved.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chong Jiang, Byung Sung Leo Kwak
  • Publication number: 20140342229
    Abstract: Disclosed are a cathode active material for a lithium secondary battery, and a lithium secondary battery including the same. The disclosed cathode active material includes a core including a compound represented by Formula 1; and a shell including a compound represented by Formula 2, in which the core and the shell have different material compositions.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 20, 2014
    Inventors: Byung-Sung Leo Kwak, Joseph G. Gordon, II, Omkaram Nalamasu, Yangkook Sun, Wongi Kim, Seugmin Oh
  • Patent number: 8736947
    Abstract: The present invention generally relates to electrochromic (EC) devices, such as used in electrochromic windows (ECWs), and their manufacture. The EC devices may comprise a transparent substrate; a first transparent conductive layer; a doped coloration layer, wherein the coloration layer dopants provide structural stability to the arrangement of atoms in the coloration layer; an electrolyte layer; a doped anode layer over said electrolyte layer, wherein the anode layer dopant provides increased electrically conductivity in the doped anode layer; and a second transparent conductive layer. A method of fabricating an electrochromic device may comprise depositing on a substrate, in sequence, a first transparent conductive layer, a doped coloration layer, an electrolyte layer, a doped anode layer, and a second transparent conductive layer, wherein at least one of the doped coloration layer, the electrolyte layer and the doped anode layer is sputter deposited using a combinatorial plasma deposition process.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 27, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Byung-Sung Leo Kwak, Kaushal K. Singh, Joseph G. Gordon, II, Omkaram Nalamasu