Patents by Inventor Byungchan Bae

Byungchan Bae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420696
    Abstract: The present disclosure relates to a method for manufacturing core-shell particles using carbon monoxide, and more particularly, to a method for manufacturing core-shell particles, the method of which a simple and fast one-pot reaction enables particle manufacturing to reduce process costs, facilitate scale-up, change various types of core and shell metals, and form a multi-layered shell by including the steps of adsorbing carbon monoxide on a transition metal for a core, and reacting carbon monoxide adsorbed on the surface of the transition metal for the core, a metal precursor for a shell, and a solvent to form particles with a core-shell structure having a reduced metal shell layer formed on a transition metal core.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-gon PARK, Eun Jik LEE, Kyunghee KIM, Sung-dae YIM, Seok-hee PARK, Min-ji KIM, Young-jun SOHN, Byungchan BAE, Seung-gon KIM, Dongwon SHIN, Hwanyeong OH, Seung Hee WOO, So Jeong LEE, Hyejin LEE, Yoon Young CHOI, Won-yong LEE, Tae-hyun YANG
  • Publication number: 20230402619
    Abstract: A method for preparing a platinum alloy catalyst using an oxide coating according to an embodiment of the present disclosure comprises: a first step of preparing a dispersion by mixing a commercial platinum catalyst and a transition metal precursor with a solvent; a second step of preparing a catalyst by putting an ultrasonic tip into the dispersion prepared through the first step and performing an ultrasonic process; a third step of performing a primary heat treatment process on the catalyst prepared through the second step; a fourth step of performing an acid treatment process on the catalyst that has undergone the primary heat treatment process through the third step; and a fifth step of preparing a platinum alloy catalyst by performing a secondary heat treatment process on the catalyst that has undergone the acid treatment process through the fourth step.
    Type: Application
    Filed: March 23, 2023
    Publication date: December 14, 2023
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Eun Jik LEE, Gu-gon PARK, DongJe LEE, Sung-dae YIM, Seok-hee PARK, Min-jin KIM, Young-jun SOHN, Byungchan BAE, Seung-gon KIM, Dongwon SHIN, Hwanyeong OH, Seung Hee WOO, So Jeong LEE, Hyejin LEE, Yoon Young CHOI, Yun Sik KANG, Won-yong LEE, Tae-hyun YANG
  • Publication number: 20230378480
    Abstract: The manufacturing method of a palladium transition metal core-based core-shell electrode catalyst according to an exemplary embodiment of the present disclosure includes a first step of preparing a slurry by irradiating ultrasonic wave to a dispersion solution including a solvent, a platinum precursor, a palladium precursor, a carbon support, and a transition metal precursor, a second step of preparing a solid material by filtering, washing, and drying the slurry prepared in the first step, and a third step of preparing a core-shell electrode catalyst by thermally treating the solid prepared in the second step in a specific gas atmosphere.
    Type: Application
    Filed: January 31, 2023
    Publication date: November 23, 2023
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-gon PARK, Eunjik LEE, Ik Sung LIM, Sung-Dae YIM, Seok-Hee PARK, Minjin KIM, Young-Jun SOHN, Byungchan BAE, Seung-gon KIM, Dongwon SHIN, Hwanyeong OH, Seung Hee WOO, So Jeong LEE, Hyejin LEE, Yoon Young CHOI, Yun Sik KANG, Won-yong LEE, Tae-hyun YANG
  • Patent number: 11791475
    Abstract: The present disclosure relates to a method for manufacturing core-shell particles using carbon monoxide, and more particularly, to a method for manufacturing core-shell particles, the method of which a simple and fast one-pot reaction enables particle manufacturing to reduce process costs, facilitate scale-up, change various types of core and shell metals, and form a multi-layered shell by including the steps of adsorbing carbon monoxide on a transition metal for a core, and reacting carbon monoxide adsorbed on the surface of the transition metal for the core, a metal precursor for a shell, and a solvent to form particles with a core-shell structure having a reduced metal shell layer formed on a transition metal core.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Eun Jik Lee, Kyunghee Kim, Sung-dae Yim, Seok-hee Park, Min-ji Kim, Young-jun Sohn, Byungchan Bae, Seung-gon Kim, Dongwon Shin, Hwanyeong Oh, Seung Hee Woo, So Jeong Lee, Hyejin Lee, Yoon Young Choi, Won-Yong Lee, Tae-hyun Yang
  • Patent number: 11658307
    Abstract: The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: May 23, 2023
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-Gon Park, Sun-Mi Hwang, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Byungchan Bae, Seung-Gon Kim, Dongwon Shin
  • Patent number: 11376664
    Abstract: The present disclosure is related to a method to control sizes of core-shell nanoparticles comprising the steps of: manufacturing slurry by irradiating ultrasonic waves to a dispersion solution containing a reducing solvent, a carbon support, a transition metal precursor and a precious metal precursor; manufacturing a solid by filtering the manufactured slurry, followed by washing and drying; and manufacturing a nanoparticle of a transition metal core and a platinum shell by heat-treating the dried solid at a temperature of 450 to 900° C. and a pressure of 1 to 90 bar for 0.5 to 10 hours under N2 atmosphere.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: July 5, 2022
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-gon Park, Hyun-uk Park, Won-yong Lee, Sung-dae Yim, Min-jin Kim, Young-jun Sohn, Byungchan Bae, Seung-gon Kim, Dongwon Shin, Hwanyeong Oh, Seung Hee Woo, So Jeong Lee, Hyejin Lee, Yoon Young Choi, Seok-hee Park, Tae-hyun Yang
  • Publication number: 20220077471
    Abstract: The present disclosure relates to a method for manufacturing core-shell particles using carbon monoxide, and more particularly, to a method for manufacturing core-shell particles, the method of which a simple and fast one-pot reaction enables particle manufacturing to reduce process costs, facilitate scale-up, change various types of core and shell metals, and form a multi-layered shell by including the steps of adsorbing carbon monoxide on a transition metal for a core, and reacting carbon monoxide adsorbed on the surface of the transition metal for the core, a metal precursor for a shell, and a solvent to form particles with a core-shell structure having a reduced metal shell layer formed on a transition metal core.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 10, 2022
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-gon PARK, Eun Jik LEE, Kyunghee KIM, Sung-dae YIM, Seok-hee PARK, Min-ji KIM, Young-jun SOHN, Byungchan BAE, Seung-gon KIM, Dongwon SHIN, Hwanyeong OH, Seung Hee WOO, So Jeong LEE, Hyejin LEE, Yoon Young CHOI, Won-yong LEE, Tae-hyun YANG
  • Patent number: 11220583
    Abstract: A block copolymer, an ion-exchange membrane including the block copolymer and a method of preparing the block copolymer are provided. The block copolymer may include a hydrophobic repeating unit and a hydrophilic repeating unit.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 11, 2022
    Assignee: Korea Institute Of Energy Research
    Inventors: Byungchan Bae, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Seung-Gon Kim, Dong Won Shin, Adam Febriy-Anto Nugraha
  • Patent number: 11211617
    Abstract: Disclosed is a fuel cell filter including a body including therein an internal space in which a fluid flows, an inlet port provided in the body and configured to receive a fluid discharged from a fuel cell stack, a gas-water separating membrane disposed in the internal space and configured to block a liquid fluid included in a fluid absorbed in the inlet port from flowing upwards, a discharge port provided in the body and configured to externally discharge the liquid fluid blocked in the gas-water separating membrane, a water absorbent disposed in the internal space and configured to absorb water included in a gaseous fluid passing through the gas-water separating membrane, and a gas outlet port provided in the body and configured to externally discharge gas separated in the gas-water separating membrane.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: December 28, 2021
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Young-jun Sohn, Hwan Yeong Oh, Dong Won Shin, Seung-gon Kim, Byungchan Bae, Min-jin Kim, Sung-dae Yim, Tae-hyun Yang, Gu-gon Park, Won-yong Lee, Chang-soo Kim, Seok-hee Park
  • Publication number: 20210170488
    Abstract: The present disclosure is related to a method to control sizes of core-shell nanoparticles comprising the steps of: manufacturing slurry by irradiating ultrasonic waves to a dispersion solution containing a reducing solvent, a carbon support, a transition metal precursor and a precious metal precursor; manufacturing a solid by filtering the manufactured slurry, followed by washing and drying; and manufacturing a nanoparticle of a transition metal core and a platinum shell by heat-treating the dried solid at a temperature of 450 to 900° C. and a pressure of 1 to 90 bar for 0.5 to 10 hours under N2 atmosphere.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 10, 2021
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-gon PARK, Hyun-uk PARK, Won-yong LEE, Sung-dae YIM, Min-jin KIM, Young-jun SOHN, Byungchan BAE, Seung-gon KIM, Dongwon SHIN, Hwanyeong OH, Seung Hee WOO, So Jeong LEE, Hyejin LEE, Yoon Young CHOI, Seok-hee PARK, Tae-hyun YANG
  • Patent number: 10892494
    Abstract: The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 12, 2021
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Sun-Mi Hwang, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Byungchan Bae, Seung-Gon Kim, Dongwon Shin
  • Publication number: 20200299475
    Abstract: A block copolymer, an ion-exchange membrane including the block copolymer and a method of preparing the block copolymer are provided. The block copolymer may include a hydrophobic repeating unit and a hydrophilic repeating unit.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Byungchan BAE, Sung-Dae YIM, Chang-Soo KIM, Won-Yong LEE, Gu-Gon PARK, Tae-Hyun YANG, Seok-Hee PARK, Minjin KIM, Young-Jun SOHN, Seung-Gon KIM, Dong Won SHIN, Adam Febriy-Anto NUGRAHA
  • Patent number: 10722859
    Abstract: To provide a reactor to improve evenness in the thickness of shell metals coated on the surface of core particles by increasing area sizes in the reactor chamber to control electric potentials, the present invention is configured to comprise a top surface able to move up and down while serving as a working electrode, a wall serving as a working electrode, a bottom surface, a standard electrode, a power supplying part and a solution injecting part, wherein the top surface can move up and down automatically by an electric motor or manually. Also, the top surface is configured to be suitable for the interior diameter of the reactor chamber, for solutions inside the reactor chamber not to leak from the top surface or from the crevice between the top surface and the wall of the reactor chamber. The bottom surface of the reactor chamber may comprise an impeller or an ultrasonic wave diffuser to bring about even diffusion in the reactor chamber.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: July 28, 2020
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Sun-Mi Hwang, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Byungchan Bae, Seung-Gon Kim, Dongwon Shin
  • Patent number: 10717835
    Abstract: A block copolymer, an ion-exchange membrane including the block copolymer and a method of preparing the block copolymer are provided. The block copolymer may include a hydrophobic repeating unit and a hydrophilic repeating unit.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: July 21, 2020
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Byungchan Bae, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Seung-Gon Kim, Dong Won Shin, Adam Febriy-Anto Nugraha
  • Publication number: 20200161664
    Abstract: The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 21, 2020
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-Gon Park, Sun-Mi Hwang, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Byungchan Bae, Seung-Gon Kim, Dongwon Shin
  • Publication number: 20200006781
    Abstract: The present disclosure relates to a method and an apparatus for manufacturing a core-shell catalyst, and more particularly, to a method and an apparatus for manufacturing a core-shell catalyst, in which a particle in the form of a core-shell in which the metal nanoparticle is coated with platinum is manufactured by substituting copper and platinum through a method of manufacturing a metal nanoparticle by emitting a laser beam to a metal ingot, and providing a particular electric potential value, and as a result, it is possible to continuously produce nanoscale uniform core-shell catalysts in large quantities.
    Type: Application
    Filed: August 12, 2019
    Publication date: January 2, 2020
    Applicant: Korea Institute of Energy Research
    Inventors: Gu-Gon PARK, Sun-Mi HWANG, Sung-Dae YIM, Chang-Soo KIM, Won-Yong LEE, Tae-Hyun YANG, Seok-Hee PARK, Minjin KIM, Young-Jun SOHN, Byungchan BAE, Seung-Gon KIM, Dongwon SHIN
  • Patent number: 10515556
    Abstract: Provided is a flight path calculating method for high altitude long endurance of an unmanned aerial vehicle based on regenerative fuel cells and solar cells according to an exemplary embodiment of the present invention may include a modeling step, a simulation step, and an analyzing step, and may be configured in a program form executed by an arithmetic processing means including a computer. a flight path searching method and a flight path searching apparatus for performing continuous flight path re-searching on the basis of information measured in real time during a flight of the unmanned aerial vehicle in the stratosphere to change a flight path so that the unmanned aerial vehicle may permanently perform long endurance in the stratosphere is provided.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 24, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Minjin Kim, Young-jun Sohn, Seung-gon Kim, Gu-gon Park, Byungchan Bae, Sung-dae Yim, Seok-hee Park, Tae-hyun Yang, Won-yong Lee, Chang-soo Kim, Moon-Yong Cha
  • Publication number: 20190252698
    Abstract: Disclosed is a fuel cell filter including a body including therein an internal space in which a fluid flows, an inlet port provided in the body and configured to receive a fluid discharged from a fuel cell stack, a gas-water separating membrane disposed in the internal space and configured to block a liquid fluid included in a fluid absorbed in the inlet port from flowing upwards, a discharge port provided in the body and configured to externally discharge the liquid fluid blocked in the gas-water separating membrane, a water absorbent disposed in the internal space and configured to absorb water included in a gaseous fluid passing through the gas-water separating membrane, and a gas outlet port provided in the body and configured to externally discharge gas separated in the gas-water separating membrane.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 15, 2019
    Inventors: Young-jun SOHN, Hwan Yeong OH, Dong Won SHIN, Seung-gon KIM, Byungchan BAE, Min-jin KIM, Sung-dae YIM, Tae-hyun YANG, Gu-gon PARK, Won-yong LEE, Chang-soo KIM, Seok-hee PARK
  • Patent number: 10355299
    Abstract: Provided are a reinforced composite membrane and a method of manufacturing the reinforced composite membrane, and more particularly, a reinforced composite membrane including a porous support layer; and an electrolyte membrane layer formed on one surface or each of both surfaces of the porous support layer, at least a portion of the porous support layer being impregnated with an electrolyte, and a method of manufacturing the reinforced composite membrane. The reinforced composite membrane may enhance an interfacial adhesive force between a support and the electrolyte membrane layer, and may be manufactured on a continuous mass production.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: July 16, 2019
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Byungchan Bae, Hyejin Lee, Sung-Dae Yim, Chang-Soo Kim, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang, Seok-Hee Park, Minjin Kim, Young-Jun Sohn, Seung-Gon Kim
  • Patent number: 10270116
    Abstract: A high-temperature polymer electrolyte membrane fuel cell stack may include a plurality of cell units; a cooling assembly including a plurality of first independent cooling plates disposed on top surfaces of the plurality of cell units, respectively, and a plurality of second independent cooling plates disposed on bottom surfaces of the plurality of cell units, respectively; and a support assembly configured to support the plurality of cell units and the cooling assembly.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: April 23, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Young-Jun Sohn, Minjin Kim, Seung-Gon Kim, Gu-Gon Park, Byungchan Bae, Sung-Dae Yim, Seok-Hee Park, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim