Patents by Inventor Byungmoo Song

Byungmoo Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7292676
    Abstract: A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: November 6, 2007
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Katherine Chandler, Tatiana Chelkovenko, David Hammer, Sergei Pikuz, Daniel Sinars, Byungmoo Song
  • Patent number: 6628079
    Abstract: A discharge lamp bulb includes a light transmissive envelope and at least one conductive fiber disposed on a wall of the envelope, where the fiber has a thickness of less than 100 microns. The lamp may be either electrodeless or may include internal electrodes. Suitable materials for the fiber(s) include but are not limited to carbon, silicon carbide, aluminum, tantalum, molybdenum, platinum, and tungsten. Silicon carbide whiskers and platinum coated silicon carbide fibers may also be used. The fiber(s) may be aligned with the electrical field, at least during starting. The lamp preferably further includes a protective material covering the fiber(s). For example the protective material may be a sol gel deposited silica coating. Noble gases inside the bulb at pressures in excess of 300 Torr can be reliably ignited at applied electric field strengths of less than 4×105 V/m. Over 2000 Torr xenon, krypton, and argon respectively achieve breakdown with an applied field of less than 3×105 V/m.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: September 30, 2003
    Assignees: Cornell Research Foundation, Inc., Fusion UV Systems, Inc., Fusion Lighting, Inc.
    Inventors: Czeslaw Golkowski, David Hammer, Byungmoo Song, Yonglai Tian, Miodrag Cekic, Michael G. Ury, Douglas A. Kirkpatrick
  • Publication number: 20020140381
    Abstract: A discharge lamp bulb includes a light transmissive envelope and at least one conductive fiber disposed on a wall of the envelope, where the fiber has a thickness of less than 100 microns. The lamp may be either electrodeless or may include internal electrodes. Suitable materials for the fiber(s) include but are not limited to carbon, silicon carbide, aluminum, tantalum, molybdenum, platinum, and tungsten. Silicon carbide whiskers and platinum coated silicon carbide fibers may also be used. The fiber(s) may be aligned with the electrical field, at least during starting. The lamp preferably further includes a protective material covering the fiber(s). For example the protective material may be a sol gel deposited silica coating. Noble gases inside the bulb at pressures in excess of 300 Torr can be reliably ignited at applied electric field strengths of less than 4×105 V/m. Over 2000 Torr xenon, krypton, and argon respectively achieve breakdown with an applied field of less than 3×105 V/m.
    Type: Application
    Filed: April 20, 2001
    Publication date: October 3, 2002
    Inventors: Czeslaw Golkowski, David Hammer, Byungmoo Song, Yonglai Tian, Miodrag Cekic, Michael G. Ury, Douglas A. Kirkpatrick