Patents by Inventor C. Alexander Morrow

C. Alexander Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10765859
    Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: September 8, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
  • Publication number: 20200276438
    Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
  • Patent number: 10211489
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, one or both of the light source and detector are enclosed within a battery cell housing.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: February 19, 2019
    Assignee: Battelle Memorial Institute
    Inventors: C. Alexander Morrow, Steven M. Risser, James H. Saunders
  • Patent number: 10177421
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, one or both of the light source and detector are enclosed within a battery cell housing and receive power from the electrodes of the battery cell.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: January 8, 2019
    Assignee: Battelle Memorial Institute
    Inventors: James H. Saunders, Steven M. Risser, C. Alexander Morrow
  • Publication number: 20180154140
    Abstract: The present disclosure relates to neuromuscular stimulation and sensing cuffs. The neuromuscular stimulation cuff has at least two fingers and a plurality of electrodes disposed on each finger. More generally, the neuromuscular stimulation cuff includes an outer, reusable component and an inner, disposable component. One or more electrodes are housed within the reusable component. The neuromuscular stimulation cuff may be produced by providing an insulating substrate layer, forming a conductive circuit on the substrate layer to form a conductive circuit layer, adhering a cover layer onto the conductive circuit layer to form a flexible circuit, and cutting at least one flexible finger from the flexible circuit. The neuromuscular stimulation cuff employs a flexible multi-electrode design which allows for reanimation of complex muscle movements in a patient, including individual finger movement.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 7, 2018
    Inventors: Chad E. Bouton, Gaurav Sharma, Andrew Sweeney, Amy M. Heintz, Stephanie Kute, Nicholas Annetta, Thomas D. Haubert, Steven M. Risser, Jeffrey Friend, John Bartholomew, Rachel Thurston, C. Alexander Morrow, George Brand, Jeffrey Ellis, Matthew Mowrer, Raymond Zaborski
  • Patent number: 9570781
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, the separator and a battery cell electrolyte can be selected to provide waveguide properties.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: February 14, 2017
    Assignee: Battelle Memorial Institute
    Inventors: James H. Saunders, C. Alexander Morrow, Steven M. Risser, Kevin B. Spahr
  • Publication number: 20160240897
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, one or both of the light source and detector are enclosed within a battery cell housing and receive power from the electrodes of the battery cell.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: James H. Saunders, Steven M. Risser, C. Alexander Morrow
  • Publication number: 20160013522
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, one or both of the light source and detector are enclosed within a battery cell housing.
    Type: Application
    Filed: February 12, 2015
    Publication date: January 14, 2016
    Inventors: C. Alexander Morrow, Steven M. Risser, James H. Saunders
  • Publication number: 20150270584
    Abstract: Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, the separator and a battery cell electrolyte can be selected to provide waveguide properties.
    Type: Application
    Filed: February 12, 2015
    Publication date: September 24, 2015
    Inventors: James H. Saunders, C. Alexander Morrow, Steven M. Risser, Kevin B. Spahr
  • Publication number: 20150155605
    Abstract: Light is transmitted through or from a separator of a battery cell or scattered within a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault.
    Type: Application
    Filed: August 9, 2013
    Publication date: June 4, 2015
    Inventors: James E. Dvorsky, Steven M. Risser, James H. Saunders, C. Alexander Morrow, David W. Nippa
  • Patent number: 8553224
    Abstract: Optical fibers are utilized to provide high efficiency, spatially resolved coupling of light from collection optics to an imaging spectrometer. In particular, a micro lens array may be utilized to couple light from multiple spatial locations into individual optical fibers. At the opposite end of the fiber bundle, the fibers are packed tightly together to send the light into an imaging spectrograph. The light that enters this spectrograph maintains its spatial separation, for instance, along the array dimension and is spectrally dispersed, for instance, along a dimension orthogonal to the array dimension. This spatially separated, wavelength resolved light can then be recorded on a two dimensional detector such as a CCD camera.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 8, 2013
    Assignee: Battelle Memorial Institute
    Inventors: C. Alexander Morrow, Theodore J. Ronningen
  • Publication number: 20130201298
    Abstract: A stereoscopic camera (10) is provided comprising: an image sensor (14); a lens system (20) adapted to focus light from a scene (O1) onto the image sensor (14); a dividing device (30) associated with the lens system (20) for dividing the lens system (20) into two portions; and a structure (30A) associated with the lens system (20) defining an aperture (41, 42) limiting an amount of light passing through at least a portion of the lens system (20). The aperture has a first length (L1) in a horizontal dimension which is greater than a second length (L2) in a vertical dimension.
    Type: Application
    Filed: April 1, 2011
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John S. Laudo, C. Alexander Morrow
  • Publication number: 20130194391
    Abstract: A stereoscopic camera is provided comprising: an image sensor; a lens system adapted to focus light from a scene onto the image sensor, the lens system including an aperture stop; an electronically actuatable matrix shutter including a plurality of individually addressable and actuatable shutter elements; a memory; and a processor communicating with the electronically actuatable matrix shutter and the memory. The processor may control the matrix shutter to create pairs of pupil apertures according to a plurality of exposure patterns stored in the memory.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 1, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventor: C. Alexander Morrow
  • Publication number: 20120081704
    Abstract: Optical fibers are utilized to provide high efficiency, spatially resolved coupling of light from collection optics to an imaging spectrometer. In particular, a micro lens array may be utilized to couple light from multiple spatial locations into individual optical fibers. At the opposite end of the fiber bundle, the fibers are packed tightly together to send the light into an imaging spectrograph. The light that enters this spectrograph maintains its spatial separation, for instance, along the array dimension and is spectrally dispersed, for instance, along a dimension orthogonal to the array dimension. This spatially separated, wavelength resolved light can then be recorded on a two dimensional detector such as a CCD camera.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 5, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: C. Alexander Morrow, Theodore J. Ronningen