Patents by Inventor C. Chu

C. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120024501
    Abstract: Thermoelectric-enhanced, liquid-cooling apparatus and method are provided for facilitating cooling of one or more components of an electronics rack. The apparatus includes a liquid-cooled structure in thermal communication with the component(s) to be cooled, and a liquid-to-air heat exchanger coupled in fluid communication with the liquid-cooled structure via a coolant loop for receiving coolant from and supply coolant to the liquid-cooled structure. A thermoelectric array is disposed with first and second coolant loop portions in thermal contact with first and second sides of the array. The thermoelectric array operates to transfer heat from coolant passing through the first loop portion to coolant passing through the second loop portion, and cools coolant passing through the first loop portion before the coolant passes through the liquid-cooled structure. Coolant passing through the first and second loop portions passes through the liquid-to-air heat exchanger for cooling thereof.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Patent number: 8094453
    Abstract: Compliant conduction rail assembly and method are provided for facilitating cooling of an electronics structure. The rail assembly includes a first thermally conductive rail mounted to a surface of the electronics structure, a second thermally conductive rail thermally conductively interfaced to the first rail, and a biasing mechanism biasing the second rail away from the first rail. The first and second rails and the biasing mechanism are configured for slidable insertion into a housing with the electronics structure, the housing containing a liquid-cooled cold plate(s). With insertion of the electronics structure into the housing, the second rail engages the liquid-cooled cold plate and is forced by the biasing mechanism into thermal contact with the cold plate, and is forced by the cold plate towards the first rail, which results in a compliant thermal interface between the electronics structure and the liquid-cooled cold plate of the housing.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20110315355
    Abstract: Cooling apparatus and method are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatus includes a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment, with the electronic subsystem being immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment in an upper portion of the compartment. The condenser fins facilitate cooling of dielectric fluid vapor rising to the upper portion of the compartment. A filler material is disposed within the sealed compartment to reduce the amount of dielectric fluid required within the compartment to achieve immersion-cooling of the electronic subsystem, and the filler material includes a shaped surface to direct dielectric fluid vapor within the compartment towards the condenser fins.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, Jr., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110315353
    Abstract: Liquid-cooled electronics racks are provided which include: immersion-cooled electronic subsystems; a vertically-oriented, vapor-condensing unit facilitating condensing dielectric fluid vapor egressing from the immersion-cooled subsystems, the vertically-oriented, vapor-condensing unit being sized and configured to reside adjacent to at least one side of the electronics rack; a reservoir for holding dielectric fluid, the reservoir receiving dielectric fluid condensate from the vertically-oriented, vapor-condensing unit; a dielectric fluid supply manifold coupling in fluid communication the reservoir and the dielectric fluid inlets of the immersion-cooled electronic subsystems; and a pump associated with a reservoir for pumping under pressure dielectric fluid from the reservoir to the dielectric fluid supply manifold for maintaining dielectric fluid in a liquid state within the immersion-cooled electronic subsystems.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110315344
    Abstract: Cooling apparatus and method are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatus includes a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment so that the electronic subsystem is immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment. The condenser fins facilitate cooling and condensing of dielectric fluid vapor generated within the sealed compartment. Within the sealed compartment, multiple thermally conductive condenser fins are interleaved with multiple electronic components immersed within the dielectric fluid to facilitate localized cooling and condensing of dielectric fluid vapor between the multiple electronic components.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110315343
    Abstract: Cooling apparatuses and methods are provided for immersion-cooling of an electronic subsystem of an electronics rack. The cooling apparatuses include a housing at least partially surrounding and forming a sealed compartment about the electronic subsystem and a dielectric fluid disposed within the sealed compartment, with the electronic subsystem being immersed within the dielectric fluid. A liquid-cooled vapor condenser is provided which includes a plurality of thermally conductive condenser fins extending within the sealed compartment. The condenser fins facilitate cooling and condensing of dielectric fluid vapor generated within the sealed compartment. Within the sealed compartment, multiple thermally conductive condenser fins are interleaved with multiple fluid-boiling fins of a heat spreader coupled to one or more of the electronic components immersed within the dielectric fluid. The interleaved fins facilitate localized cooling and condensing of dielectric fluid vapor within the sealed compartment.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110317367
    Abstract: Liquid-cooled electronics racks are provided which include: immersion-cooled electronic subsystems; a vapor-condensing heat exchanger to condense dielectric fluid vapor egressing from the immersion-cooled electronic subsystems; a dielectric fluid vapor return coupling in fluid communication the vapor outlets of the immersion-cooled electronic subsystems and the vapor-condensing heat exchanger; a reservoir for holding dielectric fluid; a gravity drain line coupled to drain dielectric fluid condensate from the vapor-condensing heat exchanger to the reservoir; an immersed, sub-cooling heat exchanger disposed within the reservoir; a dielectric fluid supply manifold coupling in fluid communication the reservoir and the dielectric fluid inlets of the immersion-cooled electronic subsystems; and a pump for supplying under pressure dielectric fluid from the reservoir to the dielectric fluid supply manifold for maintaining dielectric fluid in a liquid state within the immersion-cooled electronic subsystems.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Patent number: 8084158
    Abstract: A compact, robust, multifunctional and highly manufacturable rechargeable cylindrical electrochemical cell is provided. In some embodiments, a cell can include a spirally wound assembly having an anode sheet and a cathode sheet separated by separator membranes, each sheet having a electroactive layer on a current collector. At least one of the current collectors can be in electrical communication with conducting tabs that extend from at least one of the anode sheet and the cathode sheet, the conducting tabs extends from an end face of the spirally wound assembly. The centers of the plurality of conducting tabs can be located within a 90 degree quadrant of an end face of the spirally wound assembly.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: December 27, 2011
    Assignee: A123 Systems, Inc.
    Inventors: Andrew C. Chu, Antoni S. Gozdz, Gilbert N. Riley, Jr., C. Michael Hoff
  • Patent number: 8081461
    Abstract: A cooling apparatus and method of fabrication are provided for facilitating cooling of an electronic device. The cooling apparatus includes a thermally conductive porous material and a liquid coolant supply. The thermally conductive porous material (such as metal foam material) is coupled to a surface of the electronic device to be cooled, or a structure coupled to the electronic device. The liquid coolant supply includes a jet impingement structure, which includes one or more jet nozzles for directing liquid coolant onto the surface to be cooled. The jet nozzle(s) extends into the thermally conductive porous material, and facilitates delivery of liquid coolant onto the surface to be cooled. The thermally conductive porous material is in thermal contact with the surface to be cooled and facilitates cooling of the electronic device by boiling of the liquid coolant passing through the porous material.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8080338
    Abstract: A high capacity, high charge rate lithium secondary cell includes a high capacity lithium-containing positive electrode in electronic contact with a positive electrode current collector, said current collector in electrical connection with an external circuit, a high capacity negative electrode in electronic contact with a negative electrode current collector, said current collector in electrical connection with an external circuit, a separator positioned between and in ionic contact with the cathode and the anode, and an electrolyte in ionic contact with the positive and negative electrodes, wherein the total area specific impedance for the cell and the relative area specific impedances for the positive and negative electrodes are such that, during charging at greater than or equal to 4 C, the negative electrode potential is above the potential of metallic lithium.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: December 20, 2011
    Assignee: A123 Systems, Inc.
    Inventors: Antoni S. Gozdz, Andrew C. Chu, Yet Ming Chiang, Gilbert N. Riley, Jr.
  • Publication number: 20110290448
    Abstract: Dehumidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet or outlet side of the rack, wherein air flows through the rack from the air inlet to the air outlet side. The heat exchanger is positioned for air passing through the electronics rack to pass across the heat exchanger, and is in fluid communication with a coolant loop for passing coolant therethrough at a temperature below a dew point temperature of the air passing across the heat exchanger so that air passing across the heat exchanger is dehumidified and cooled. A condensate collector, disposed below the heat exchanger, collects liquid condensate from the dehumidifying of air passing through the electronics rack, wherein the heat exchanger includes a plurality of sloped surfaces configured to facilitate drainage of liquid condensate from the heat exchanger to the condensate collector.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110292601
    Abstract: Dehumidifying and re-humidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes a dehumidifying air-to-liquid heat exchanger disposed at an air inlet side of the rack and a re-humidifying structure disposed at an air outlet side of the rack. The dehumidifying air-to-liquid heat exchanger is in fluid communication with a coolant loop for passing chilled coolant through the heat exchanger, and the dehumidifying heat exchanger dehumidifies ingressing air to the electronics rack to reduce a dew point of air flowing through the rack. A condensate collector disposed at the air inlet side collects liquid condensate from the dehumidifying of ingressing air, and a condensate delivery mechanism delivers the condensate to the re-humidifying structure to humidify air egressing from the electronics rack.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110292600
    Abstract: Dehumidifying and re-humidifying cooling apparatus and method are provided for an electronics rack. The apparatus includes an air-to-liquid heat exchanger disposed at an air inlet side of the rack, wherein air flows through the rack from the air inlet side to an air outlet side. The heat exchanger, which is positioned for ingressing air to pass thereacross before passing through the electronics rack, is in fluid communication with a coolant loop for passing coolant through the heat exchanger, and the heat exchanger dehumidifies ingressing air to the electronics rack to reduce a dew point of air flowing through the rack. A condensate collector disposed at the air inlet side collects liquid condensate from the heat exchanger's dehumidifying of ingressing air, and an evaporator disposed at the air outlet side humidifies air egressing from the electronics rack employing condensate from the condensate collector.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, JR., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8059405
    Abstract: Condenser structures and cooling apparatuses are provided which facilitate vapor condensation heat transfer of a coolant employed in cooling an electronic device. The condenser structure includes a thermally conductive condenser block with multiple exposed cavities therein extending from a first main surface towards a second main surface. The condenser block is a monolithic structure, and the first main surface is a coolant vapor condensate formation surface when the condenser structure is operationally facilitating cooling of an electronic device. The exposed cavities extend from the first main surface into the condenser block to increase a condensation surface area of the condenser block, thereby facilitating coolant vapor condensate formation on the condenser block, and thus cooling of the electronic device using a two-phase coolant. The condenser structure also includes coolant-carrying channels for facilitating cooling of the condenser block, and thus vapor condensate formation on the condenser block.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: D648748
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu
  • Patent number: D648749
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu
  • Patent number: D648750
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu
  • Patent number: D648751
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu
  • Patent number: D648752
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu
  • Patent number: D648753
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 15, 2011
    Inventor: Henry C. Chu