Patents by Inventor C. Clark

C. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100304959
    Abstract: A catalyst composition comprises (a) a MCM-22 family molecular sieve; and (b) a binder, wherein the MCM-22 family molecular sieve is characterized by an average crystal agglomerate size of less than or equal to 16 microns. The catalyst composition may further have a second molecular sieve having a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent.
    Type: Application
    Filed: April 26, 2010
    Publication date: December 2, 2010
    Inventors: Christine N. Elia, Frederick Y. Lo, Michael C. Clark, C. Morris Smith, Mohan Kalyanaraman
  • Publication number: 20100300930
    Abstract: A process for the alkylation of a benzene-containing refinery stream such as reformate with light refinery olefins which is capable of achieving high benzene conversion levels operates in a fixed bed of an MWW zeolite catalyst, preferably MCM-22, in single pass mode in the liquid phase at a relatively low to moderate temperatures with pressure maintained at a value adequate to ensure subcritical operation. High levels of benzene conversion with conversions of at least 90% and higher, e.g. 92% or 95% or even higher are achievable. A high octane product is produced, comprising mono-, di- and tri-alkylbenzenes with lesser levels of the tetra-substituted products. By operating with staged olefin injection, the end point of the alkylation product can be maintained at a low value while, at the same time, achieving high levels of benzene and olefin conversion.
    Type: Application
    Filed: March 9, 2010
    Publication date: December 2, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael C. CLARK, Benjamin S. UMANSKY, Elizabeth A. NYE, Mark J. REICHENSPERGER, William C. LEWIS
  • Publication number: 20100298617
    Abstract: Disclosed herein is a process and catalyst for producing an ethylbenzene feed from a polyethylbenzene feed, comprising the step of contacting a benzene feed with a polyethylbenzene feed under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.01 wt. % to 0.5 wt. % of said catalyst, to provide a product which comprises ethylbenzene.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 25, 2010
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7833426
    Abstract: The described embodiments relate to features in substrates and methods of forming same. One exemplary embodiment can be a microdevice that includes a substrate extending between a first substrate surface and a generally opposing second substrate surface, and at least one feature formed into the first surface along a bore axis that is not transverse to the first surface.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: November 16, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Leo C. Clarke, Chris Aschoff, Cary G. Addington
  • Publication number: 20100284765
    Abstract: A washer body bearing hardened balls in apertures in the washer body provides a counter-torque resistance in a fastening. The hardened balls form projections that indent the underside of a fastener head and an adjacent fastening joint surface during tightening of the fastening to prevent rotation of the fastener head while a nut is driven to tighten or loosen the fastening. A reservoir portion of the apertures in the washer around the balls receives the material displaced during indention to allow full contact of the washer with the fastener head and joint surface. The hardened balls provide point loads for ready indentation upon minimal loading to prevent rotation of the fastener, obviating the need for a counter-torque wrench.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 11, 2010
    Inventor: Ronald C. Clarke
  • Publication number: 20100284759
    Abstract: A retrofit system for providing a load indicator on a foundation bolt. The system includes a fastener having a fastener head, gauge length and central fastener bore in the gauge length and head. A datum rod is anchored in the central bore with a free datum rod being moveable longitudinally relative to the fastener head during elongation of the fastener gauge length. An internally threaded fastener portion below the central fastener bore is configured to thread over a foundation bolt. A compression sleeve positioned over the foundation bolt is configured to receive the load indicating fastener therein and to bear the compressive forces of the fastening. Elongation of the gauge length as the fastener is tightened onto the stud is manifest as displacement of the datum rod end, which displacement is measured to provide an indication of fastener loading.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 11, 2010
    Inventor: Ronald C. Clarke
  • Publication number: 20100280298
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7824223
    Abstract: An electrical assembly comprises a housing having a frame portion. A substrate has a first side and a second side opposite the first side. A subscriber identification module is mounted to a first side of the substrate and has device terminals. A first connector portion is secured to the second side of the substrate and has connector terminals. A retainer is associated with an interior of the frame portion. The retainer retains at least one of the substrate and the first connector portion. Conductive (e.g., conductive vias or through-holes) in the substrate connect the connector terminals to the device terminals.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: November 2, 2010
    Assignee: Deere & Company
    Inventors: Christopher M. Masucci, Kenneth C. Clark, David M. Thompson, Michael A. Hajicek, Todd A. Braun, Christopher J. Schmit
  • Publication number: 20100265673
    Abstract: An electrical assembly comprises a housing having a frame portion. A substrate has a first side and a second side opposite the first side. A subscriber identification module is mounted to a first side of the substrate and has device terminals. A first connector portion is secured to the second side of the substrate and has connector terminals. A retainer is associated with an interior of the frame portion. The retainer retains at least one of the substrate and the first connector portion. Conductive (e.g., conductive vias or through-holes) in the substrate connect the connector terminals to the device terminals.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Inventors: Christopher M. Masucci, Kenneth C. Clark, David M. Thompson, Michael A. Hajicek, Todd A. Braun, Christopher J. Schmit
  • Publication number: 20100265667
    Abstract: An electrical assembly comprises a housing, where the housing has an inner housing and a removable outer housing removably connected to the inner housing. A first connector portion is secured to the inner housing. The first connector portion comprises a dielectric body and connector terminals. A subscriber identification module is supported by the inner housing. The subscriber identification module has device terminals. A group of conductors or a conductor assembly supports an electrical connection of the connector terminals to the device terminals. A holder retains the subscriber identification module with respect to the inner housing.
    Type: Application
    Filed: August 14, 2009
    Publication date: October 21, 2010
    Inventors: Christopher M. Masucci, Kenneth C. Clark, David M. Thompson, Michael A. Hajicek, Todd A. Braun, Christopher J. Schmit
  • Publication number: 20100265672
    Abstract: The assembly has a subscriber identification module comprising a housing with a recess disposed in the housing. An electrical connector portion is secured to the housing. The connector portion comprises a dielectric body and connector terminals. A subscriber identification module is housed in the housing, where the subscriber identification module has device terminals. A conductor or flexible substrate electrically connects the connector terminals to the device terminals. A protective filler overlies the subscriber identification module and at least part of the conductor or the flexible substrate.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Inventors: Christopher M. Masucci, Kenneth C. Clark, David M. Thompson, Michael A. Hajicek, Todd A. Braun, Christopher J. Schmit
  • Publication number: 20100265674
    Abstract: In accordance with one embodiment, an electrical assembly comprises a housing having a recess in the housing. A first connector portion is securable to the housing. The connector portion comprises a dielectric body and connector terminals. A subscriber identification module is located in or mounted in the housing and has device terminals. A substrate comprises a first section that intersects at an angle a second section. The first section comprises first conductive traces electrically connected to the device terminals. The second section comprises second conductive traces electrically connected to the connector terminals. Conductors are electrically connected to the first conductive traces and the second conductive traces.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Inventors: Christopher M. Masucci, Kenneth C. Clark, David M. Thompson, Michael A. Hajicek, Todd A. Braun, Christopher J. Schmit
  • Patent number: 7816574
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Publication number: 20100257770
    Abstract: Fishing line having an array of shaped features on the outer surface thereof and method for making such lines.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 14, 2010
    Inventors: Jeffrey L. Wieringa, Daniel R. Croswell, Linda Croswell, John C. Clark
  • Publication number: 20100249472
    Abstract: A process is described for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene and one or more alkanes are introduced into said first alkylation reaction zone, having operating conditions, e.g., temperature and pressure, which are controlled effective to cause the alkylatable aromatic compound to be partly in the vapor phase and partly in the liquid phase with the ratio of liquid volume to vapor volume of the feed in each zone to be from about 0.5 to about 10.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 30, 2010
    Inventors: Michael C. Clark, Brian Maerz
  • Patent number: 7803976
    Abstract: A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of: (a) providing at least one reaction zone having a water content with at least one alkylation catalyst having an activity and a selectivity for said monoalkylated benzene, said alkylation catalyst comprising a porous crystalline molecular sieve of a MCM-22 family material, said MCM-22 family material is characterized by having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Michael C. Clark
  • Patent number: 7799961
    Abstract: A process for producing an alkylated aromatic compound from polyalkylated aromatic compound(s) having bi-alkylated aromatic compound(s) and tri-alkylated aromatic compound(s), comprising the step of contacting alkylatable aromatic compound(s) with the polyalkylated aromatic compound(s) at a transalkylation condition in the presence of a transalkylation catalyst. The transalkylation catalyst has high activity sufficient to achieve a ratio of bi-alkylated aromatic compound(s) conversion over tri-alkylated aromatic compound(s) conversion in a range of from about 0.5 to about 2.5.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: September 21, 2010
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Vijay Nanda, Carlos N. Lopez, Brian Maerz, Chung-Ming Chi
  • Patent number: 7795487
    Abstract: Disclosed herein is a process and catalyst for producing a monoalkylated aromatic compound from a polyalkylated aromatic compound, comprising the step of contacting an alkylatable aromatic compound with a polyalkylated aromatic compound under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.001 wt. % to 10.0 wt. % of said catalyst, to provide a product which comprises a monoalkylated aromatic compound.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: September 14, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7790940
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g. a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g. MCM-49, or a mixture thereof.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: D624586
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: September 28, 2010
    Assignee: Target Brands, Inc.
    Inventors: Ted C. Halbur, Donald C. Clark, Roger Ricketts