Patents by Inventor C. Michael Gore

C. Michael Gore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7878786
    Abstract: An apparatus for producing a tubular tissue scaffold having aligned biopolymer fibrils including a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: February 1, 2011
    Assignee: University of South Carolina
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith
  • Patent number: 7727441
    Abstract: A tubular tissue scaffold is described which comprises a tube having a wall, wherein the wall includes biopolymer fibrils that are aligned in a helical pattern around the longitudinal axis of the tube where the pitch of the helical pattern changes with the radial position in the tube wall. The scaffold is capable of directing the morphological pattern of attached and growing cells to form a helical pattern around the tube walls. Additionally, an apparatus for producing such a tubular tissue scaffold is disclosed, the apparatus comprising a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device. A method for producing the tubular tissue scaffolds is also disclosed.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: June 1, 2010
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith
  • Publication number: 20080217820
    Abstract: A tubular tissue scaffold is described which comprises a tube having a wall, wherein the wall includes biopolymer fibrils that are aligned in a helical pattern around the longitudinal axis of the tube where the pitch of the helical pattern changes with the radial position in the tube wall. The scaffold is capable of directing the morphological pattern of attached and growing cells to form a helical pattern around the tube walls. Additionally, an apparatus for producing such a tubular tissue scaffold is disclosed, the apparatus comprising a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device. A method for producing the tubular tissue scaffolds is also disclosed.
    Type: Application
    Filed: February 25, 2008
    Publication date: September 11, 2008
    Applicant: University of South Carolina
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith
  • Publication number: 20080220506
    Abstract: A tubular tissue scaffold is described which comprises a tube having a wall, wherein the wall includes biopolymer fibrils that are aligned in a helical pattern around the longitudinal axis of the tube where the pitch of the helical pattern changes with the radial position in the tube wall. The scaffold is capable of directing the morphological pattern of attached and growing cells to form a helical pattern around the tube walls. Additionally, an apparatus for producing such a tubular tissue scaffold is disclosed, the apparatus comprising a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device. A method for producing the tubular tissue scaffolds is also disclosed.
    Type: Application
    Filed: February 25, 2008
    Publication date: September 11, 2008
    Applicant: University of South Carolina
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith
  • Publication number: 20080147199
    Abstract: A tubular tissue scaffold is described which comprises a tube having a wall, wherein the wall includes biopolymer fibrils that are aligned in a helical pattern around the longitudinal axis of the tube where the pitch of the helical pattern changes with the radial position in the tube wall. The scaffold is capable of directing the morphological pattern of attached and growing cells to form a helical pattern around the tube walls. Additionally, an apparatus for producing such a tubular tissue scaffold is disclosed, the apparatus comprising a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device. A method for producing the tubular tissue scaffolds is also disclosed.
    Type: Application
    Filed: February 25, 2008
    Publication date: June 19, 2008
    Applicant: University of South Carolina
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith
  • Patent number: 7338517
    Abstract: A tubular tissue scaffold is described which comprises a tube having a wall, wherein the wall includes biopolymer fibrils that are aligned in a helical pattern around the longitudinal axis of the tube where the pitch of the helical pattern changes with the radial position in the tube wall. The scaffold is capable of directing the morphological pattern of attached and growing cells to form a helical pattern around the tube walls. Additionally, an apparatus for producing such a tubular tissue scaffold is disclosed, the apparatus comprising a biopolymer gel dispersion feed pump that is operably connected to a tube-forming device having an exit port, where the tube-forming device is capable of producing a tube from the gel dispersion while providing an angular shear force across the wall of the tube, and a liquid bath located to receive the tubular tissue scaffold from the tube-forming device. A method for producing the tubular tissue scaffolds is also disclosed.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: March 4, 2008
    Assignee: University of South Carolina
    Inventors: Michael J. Yost, C. Michael Gore, Louis Terracio, Richard L. Goodwin, Edie C. Goldsmith